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ABSTRACT

Convex-set constrained sparse signal reconstruction facilitates flexible measurement model

and accurate recovery. The objective function that we wish to minimize is a sum of a convex

differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term.

We apply sparse signal regularization where the signal belongs to a closed convex set within the

closure of the domain of the NLL. Signal sparsity is imposed using the `1-norm penalty on the

signal’s linear transform coefficients.

First, we present a projected Nesterov’s proximal-gradient (PNPG) approach that employs a

projected Nesterov’s acceleration step with restart and a duality-based inner iteration to compute

the proximal mapping. We propose an adaptive step-size selection scheme to obtain a good local

majorizing function of the NLL and reduce the time spent backtracking. We present an integrated

derivation of the momentum acceleration and proofs of O.k�2/ objective function convergence

rate and convergence of the iterates, which account for adaptive step size, inexactness of the it-

erative proximal mapping, and the convex-set constraint. The tuning of PNPG is largely applica-

tion independent. Tomographic and compressed-sensing reconstruction experiments with Poisson

generalized linear and Gaussian linear measurement models demonstrate the performance of the

proposed approach.

We then address the problem of upper-bounding the regularization constant for the convex-set–

constrained sparse signal recovery problem behind the PNPG framework. This bound defines the

maximum influence the regularization term has to the signal recovery. We formulate an optimiza-

tion problem for finding these bounds when the regularization term can be globally minimized and

develop an alternating directionmethod of multipliers (ADMM) typemethod for their computation.

Simulation examples show that the derived and empirical bounds match.
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Finally, we show application of the PNPG framework to X-ray computed tomography (CT) and

outline amethod for sparse image reconstruction fromPoisson-distributed polychromatic X-ray CT

measurements under the blind scenario where the material of the inspected object and the incident

energy spectrum are unknown. To obtain a parsimonious mean measurement-model parameteri-

zation, we first rewrite the measurement equation by changing the integral variable from photon

energy to mass attenuation, which allows us to combine the variations brought by the unknown

incident spectrum andmass attenuation into a single unknownmass-attenuation spectrum function;

the resulting measurement equation has the Laplace integral form. We apply a block coordinate-

descent algorithm that alternates between an NPG image reconstruction step and a limited-memory

BFGS with box constraints (L-BFGS-B) iteration for updating mass-attenuation spectrum parame-

ters. Our NPG-BFGS algorithm is the first physical-model based image reconstruction method for

simultaneous blind sparse image reconstruction and mass-attenuation spectrum estimation from

polychromatic measurements. Real X-ray CT reconstruction examples demonstrate the perfor-

mance of the proposed blind scheme.
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CHAPTER 1. INTRODUCTION

This dissertation is inspired and developed while pursuing better quality of image reconstruc-

tions from real polychromatic X-ray CT data. The sparse signal recovery problem under con-

straints, and development of nonlinear physical-model–based reconstruction algorithms are im-

portant for the broad signal processing community. We now motivate the topics of this thesis and

highlight our contribution.

1.1 Momentum-Accelerated Sparse Signal Recovery

With Signal Constraints

We developed computationally efficient algorithms for minimization of general nonlinear NLL

functions with sparse signal regularizations and convex-set constraints on the signal. Our algo-

rithms can solve inverse problems under various statistical models, including the popular Gaussian

and Poisson generalized linear models (GLMs). We incorporated the developed algorithm into our

polychromatic X-ray CT reconstruction framework outlined in Section 1.3 by using it to estimate

the underlying density map.

In Chapter 2, we present an integrated derivation of the momentum acceleration and proofs of

O.k�2/ objective function convergence rate and convergence of the iterates, which account for

adaptive step size, inexactness of the iterative proximal mapping, and the convex-set constraint.

These results are the first for an accelerated proximal-gradient (PG) method with step-size adapta-

tion (and, therefore, adjustment to the local curvature of the NLL) that

• establish convergence of the iterates and
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• incorporate inexact proximal operators into objective function convergence rate and conver-

gence of the iterates analyses.

Thanks to itsmatrix-free nature, our proposed approach can fit large-scale sparseGLMs [BvG11].

Indeed, we demonstrate in Chapter 4 and [GD16b] that our PNPG algorithm exhibits state-of-the-

art convergence speed under the large-scale scenario.

We demonstrated the power of combining step-size adaptation and momentum acceleration.

In this process, we violated the conventional textbook definitions of majorizing functions that re-

quire global, rather than local, majorization. We believe that this will motivate further research on

developing local majorizing functions in the general majorization-minimization (MM) algorithmic

framework.

1.2 Upper-Bounding the Regularization Constant for

Convex Sparse Signal Reconstruction

Selecting the range of regularization constants u is important in application areas that employ

regularized statistical inference. Our upper bounds on u can be used to construct accurate prior

distributions for the regularization constant and to design continuation procedures that gradually

decrease a regularization constant from a large starting point down to the desired value, which

improves numerical stability and convergence speed of the resulting minimization algorithm by

taking advantage of the fact that minimization algorithms for penalized regularization schemes

converge faster for “smoother” problems with larger u. The work described in Chapter 3 is the

first to upper-bound the regularization constant for total-variation (TV) regularizations.

1.3 Polychromatic X-ray Source Modeling

X-ray sources are polychromatic. Ignoring this fact when performing reconstruction leads to

artifacts, such as cupping and streaking, in reconstructed images. We proposed a new model pa-
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rameterization that allows for blind correction of these artifacts and then developed reconstruction

algorithms based on this parameterization. Here, blind correction means that we do not know

(i) incident spectrum (which is a characteristic of the X-ray machine) and

(ii) mass attenuation (inspected material).

Non-blind scenario. If the mass-attenuation spectrum is known (incident spectrum and mass

attenuation in (i) and (ii) are known), we have established conditions under which the NLLs are

convex functions of the density map assuming polychromatic measurements and Poisson (Chap-

ter 4) or lognormal noise models [GD15b]. Considering the importance and accumulated knowl-

edge in X-ray CT, establishing convexity of the NLLs associated with polychromatic X-ray CT is

important; we proved these results thanks to the Laplace-transform formulation of the noiseless

single-material measurements and GLMs that follow from this formulation.

Blind scenario. Accurately characterizing the incident spectrum of the X-ray machine and

the mass-attenuation function of the inspected material is not easy or may not be possible, which

justifies the blind scenario. Our reconstruction algorithm in Chapter 4 is the first physical-model–

based method for simultaneous blind sparse image reconstruction and mass-attenuation spectrum

estimation from polychromatic measurements. This algorithm

i) matches or outperforms non-blind linearization methods that assume perfect knowledge of

the X-ray source and material properties.

We have identified and quantified inherent limitations of the blind model, such as the shift ambi-

guity of the mass-attenuation spectrum. Important results accomplished in this task are:

ii) conditions for biconvexity of the corresponding NLL with respect to the density map and

mass-attenuation spectrum parameters (thanks to the Laplace-transform and GLM formula-

tions of the measurement models),

iii) establishment of the Kurdyka-Łojasiewicz (KL) property of the underlying objective func-

tion (penalized NLL).
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Use of parsimonious physics-based models and ambiguity, convexity, and convergence analyses

differentiate our work from the existing efforts on blind beam-hardening correction [VVD+11;

JBS15], which have an ad hoc flavor.

The underlying optimization problem for performing our blind sparse signal reconstruction in

Chapter 4 is biconvex with respect to the density map and mass-attenuation spectrum parameters;

solving and analyzing bi- and multiconvex problems is of great general interest in optimization

theory, see [XY13] and references therein. It would be of interest to prove the conjecture that the

general version of i) is a consequence of the separability in the measurement model.
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CHAPTER 2. PROJECTED NESTEROV’S PROXIMAL-GRADIENT

ALGORITHM FOR SPARSE SIGNAL RECOVERY

A paper published in IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3510–3525, 2017.

Renliang Gu and Aleksandar Dogandžić

Abstract

We develop a PNPG approach for sparse signal reconstruction that combines adaptive step

size with Nesterov’s momentum acceleration. The objective function that we wish to minimize

is the sum of a convex differentiable data-fidelity (NLL) term and a convex regularization term.

We apply sparse signal regularization where the signal belongs to a closed convex set within the

closure of the domain of the NLL; the convex-set constraint facilitates flexible NLL domains and

accurate signal recovery. Signal sparsity is imposed using the `1-norm penalty on the signal’s lin-

ear transform coefficients. The PNPG approach employs a projected Nesterov’s acceleration step

with restart and a duality-based inner iteration to compute the proximal mapping. We propose an

adaptive step-size selection scheme to obtain a good local majorizing function of the NLL and re-

duce the time spent backtracking. Thanks to step-size adaptation, PNPG converges faster than the

methods that do not adjust to the local curvature of the NLL. We present an integrated derivation

of the momentum acceleration and proofs ofO.k�2/ objective function convergence rate and con-

vergence of the iterates, which account for adaptive step size, inexactness of the iterative proximal

mapping, and the convex-set constraint. The tuning of PNPG is largely application independent.

Tomographic and compressed-sensing reconstruction experiments with Poisson generalized linear

and Gaussian linear measurement models demonstrate the performance of the proposed approach.
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2.1 Introduction

Most natural signals are well described by only a few significant coefficients in an appropriate

transform domain, with the number of significant coefficients much smaller than the signal size.

Therefore, for a vector x 2 Rp that represents the signal and an appropriate sparsifying dictionary

matrix ‰, ‰Hx is a signal transform-coefficient vector with most elements having negligible

magnitudes. Real-valued ‰ 2 Rp�p0 can accommodate discrete wavelet transform (DWT) or

gradient-map sparsity with anisotropic TV sparsifying transform (with ‰ D Œ‰v ‰h�); a complex-

valued ‰ D ‰v C j‰h 2 Cp�p0 can accommodate gradient-map sparsity and the 2D isotropic

TV sparsifying transform; here‰v; ‰h 2 Rp�p0 are the vertical and horizontal difference matrices

similar to those in [BV16, Sec. 15.3.3]. The idea behind compressed sensing [CT06] is to sense

the significant components of‰Hx using a small number of measurements; here, “H ” denotes the

conjugate transpose.

We use the NLL (data-fidelity) functionL.x/ to describe the noisy measurement process. Con-

sider signals x that belong to a closed convex set C and assume

C � cl.domL/ (2.1)

which ensures that L.x/ is computable for all x 2 intC . If C n domL is not empty, then L.x/

is not computable in it, which needs special attention; see Section 2.3. The nonnegative signal

scenario with

C D Rp
C (2.2)

is of significant practical interest and applicable to X-ray CT, single photon emission computed

tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging

(MRI), where the pixel values correspond to inherently nonnegative density or concentration maps

[PL15]. Harmany, Marcia, and Willett consider such a nonnegative sparse signal model and de-
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velop in [HMW12] and [HTWM10] a convex-relaxation sparse Poisson-intensity reconstruction al-

gorithm (SPIRAL) and a linearly constrained gradient projection method for Poisson and Gaussian

linearmeasurements, respectively. In addition to signal nonnegativity, other convex-set constraints

have been considered in the literature: prescribed value in the Fourier domain; box, geometric, and

total-energy constraints; intersections of these sets [YW82]; and unit simplex [HR12].

We adopt the analysis regularization framework and minimize

f .x/ D L.x/C ur.x/ (2.3a)

with respect to the signal x, where L.x/ is a differentiable convex NLL and

r.x/ D IC .x/C �.x/ (2.3b)

is a convex regularization term that imposes convex-set constraint on x, x 2 C , and sparsity of an

appropriate transformed x through the convex penalty �.x/ [HMW12; GD15c; GD16b; BPR16;

DFS12]. Here, u > 0 is a scalar tuning constant that quantifies the weight of the regularization

term, and IC .x/ ,

„
0; x 2 C

C1; otherwise
is the indicator function. The penalty �.x/ is often

selected as the `1-norm of the signal transform-coefficient vector [DFS12]:

�.x/ D k‰Hxk1: (2.4)

Define the proximal operator for a function r.x/ scaled by � > 0 at argument a 2 Rp:

prox�r a D arg min
x2Rp

1
2
kx � ak2

2 C �r.x/: (2.5)

In this chapter (see also [GD15c; GD16b]), we develop a PNPG method whose momentum

acceleration accommodates adaptive step-size selection and convex-set constraint on the signal x.
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Computing the proximal operator with respect to r.x/ in (2.3b) needs iteration and is therefore

inexact [DFS09; SRB11; VSBV13]. We establish conditions for the O.k�2/ convergence rate

of the objective function as well as the convergence of PNPG iterates. These results are the first

for an accelerated PG method with step-size adaptation (and, therefore, adjustment to the local

curvature of the NLL) that

• establish convergence of the iterates (Theorem 2.2) and

• incorporate inexact proximal operators into objective function convergence rate and conver-

gence of the iterates analyses (Theorems 2.1 and 2.2).

We modify the original Nesterov’s acceleration [Nes83; BT09a] so that we can establish these re-

sults when the step size is adaptive and adjusts to the local curvature of the NLL. (Local-curvature

adjustments of theNLL by step-size adaptation have also been used in other algorithms under differ-

ent contexts in [Nes13; BCG11; BLPP16]; see also the following and discussion in Section 2.4.1.1.)

Our integration of the adaptive step size and convex-set constraint extends the application of the

Nesterov-type acceleration to more general measurement models than those used previously, such

as the Poisson compressed-sensing scenario described in Section 2.2.1. Furthermore, a convex-set

constraint can bring significant improvement to signal reconstructions compared with imposing

signal sparsity only, as illustrated in Section 2.5.2. See Section 2.4.1 for further discussion of

O.k�2/ acceleration approaches [AT06; BCG11; BPR16; BN16; BT09a].

Optimization problems (2.3a) with composite penalty-term structure in (2.3b) have been con-

sidered in [DFS09; CPP09; HMW12; AABM12], which use PG (forward-backward)–type meth-

ods with nested inner iterations. The general optimization approach in these references is close

to ours. Unlike PNPG, these methods approximate the NLLs whose gradients are not Lipschitz

continuous and [DFS09; CPP09; HMW12] do not have fastO.k�2/ convergence-rate guarantees;

[CPP09] observes the benefits of larger step sizes and step-size adaptation. The nested forward-

backward splitting iteration in [AABM12] applies fast iterative shrinkage-thresholding algorithm

(FISTA) [BT09b] in both the outer and inner loops using duality to formulate the inner iteration;
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however, it does not employ step-size adaptation or analyze effects of inexact proximal-mapping

computations. References [DFS12; RFP13; PCP11; CP11a; Con13; Vũ13; AABM12] describe

splitting schemes to minimize (2.3a), where [DFS12; PCP11] are inspired by the parallel proximal

algorithm (PPXA) [CP11b]. Some splitting schemes, e.g., [DFS12; PCP11], apply proximal oper-

ations on individual summandsL.x/, u�.x/, and IC .x/, which is useful if all individual proximal

operators are easy to compute. Both [DFS12] and generalized forward-backward (GFB) splitting

[RFP13] require inner iterations to solve prox�� a for �.x/ in (2.4) in the general case where the

sparsifying matrix ‰ is not orthogonal. Reference [AABM12] applies the primal-dual approach

by Chambolle and Pock [CP11a], which allows solving its Poisson reconstruction problems with-

out approximating the NLL: (2.3a) is split into L.x/ and r.x/ and also into L.x/ C �.x/ and

IC .x/, where the second approach (termed CP) does not require nested iterations. The primal-

dual splitting (PDS) method in [Con13; Vũ13] does not require inner iterations for general L.x/

and sparsifying matrix. GFB and PDS need Lipschitz-continuous gradient of L and the value of

the Lipschitz constant is important for tuning their parameters. The convergence rate of both GFB

and PDS methods can be upper-bounded by C=k where k is the number of iterations and the con-

stant C is determined by values of the tuning proximal and relaxation constants [LFP16; Dav15].

In Section 2.5, we show the performances of CP, GFB, and PDS.

Variable-metric methods with problem-specific diagonal scaling matrices have been consid-

ered in [BLPP16; Sal16; BPR16]; [BLPP16] applies Barzilai-Borwein (BB) step size and an

Armijo line search for the overrelaxation parameter. It accounts for inexact proximal operator and

establishes convergence of iterates but does not employ acceleration or provide fast convergence-

rate guarantees. [BLPP16] does not require the Lipschitz continuity of the gradient of the NLL in

general, except for proving the convergence rate of the objective function. Salzo [Sal16] analyzes

variable-metric algorithms without acceleration (of the type [BLPP16]) and relies on the uniform

continuity of rL for the convergence analysis of both objective function and iterates; however,

[Sal16] does not account for inexact proximal operators. In practice, special care is needed in

selecting a good scaling matrix, and no clear guidelines are given in [BLPP16; Sal16; BPR16]
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for this selection. Setting the overrelaxation parameter in [Sal16] to unity leads to a variable-

metric/scaling scheme with an adaptive step size; further, setting the scaling matrix to identity

leads to a PG iteration with adaptive step size.

Similar to templates for first-order conic solvers (TFOCS) [BCG11], PNPG code is easy to

maintain: for example, the proximal-mapping computation can be easily replaced as a module by

the latest state-of-the-art solver. Furthermore, PNPG requires minimal application-independent

tuning; indeed, we use the same set of tuning parameters in two different application examples.

This is in contrast with the existing splitting methods, which require problem-dependent (NLL-

and u-dependent) tuning, with convergence speed sensitive to the choice of tuning constants.

We review the notation: 0, 1, I , denoting the vectors of zeros and ones and identity matrix, re-

spectively; “�” is the elementwise version of “�”; “T ” and “H” are transpose and conjugate trans-

pose, respectively. For a vector a D .ai/
N
iD1 2 RN , define the projection and soft-thresholding

operators:

PC .a/ D argmin
x2C
kx � ak2

2 (2.6a)

ŒT �.a/�i D sgn.ai/max
�
jai j � �; 0

�
(2.6b)

and the elementwise exponential function Œexpı a�i D exp ai . The projection onto RN
C and the

proximal operator (2.5) for the `1-norm kxk1 can be computed in closed form:

�
PRN

C
.a/
�

i
D max.ai ; 0/; prox�k�k1

a D T �.a/: (2.6c)

2.1.1 Preliminary Results

Define the "-subgradient [Ber15, Sec. 3.3] (" > 0):

@"r.x/ ,
˚
g 2 Rp

j r.z/ � r.x/C .z � x/Tg � ";8z 2 Rp
	

(2.7)

and an inexact proximal operator [VSBV13]:
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Definition 1. We say that x approximates proxur.a/ with "-precision, denoted

x Ñ" proxur a (2.8)

if .a � x/=u 2 @ "2

2u

r.x/.

Proposition 2.1. x Ñ" proxur a implies kx � proxur ak2 � ".

Proof: By Definition 1, the following holds for any z:

ur.z/ � ur.x/C .z � x/T .a � x/ � 0:5"2 (2.9a)

which is equivalent to

0:5kz � ak2
2 C ur.z/ � 0:5kx � ak2

2 C ur.x/C 0:5kz � xk2
2 � 0:5"2: (2.9b)

Since z D proxur a minimizes the left-hand side of (2.9b), substituting it into (2.9b) completes

the proof.

Now, we adapt the results in [BT09b, Sec. IV-A] and [AABM12, Sec. 5.2.4] to complex ‰

using the fact that, for complex y and p, kyk1 D maxkpk1�1 Re.p
Hy/. The proximal operator

(2.5) with �.x/ in (2.4) can be rewritten as

prox�r a D yx.yp/ (2.10a)

where yp 2 Cp0 solves the dual problem [BT09b; AABM12]:

yp D arg min
p2H

1
2
kS.p/k2

2 �
1
2
kS.p/ � yx.p/k2

2 (2.10b)
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and

H ,
˚
w 2 Cp0

j kwk1 � 1
	

(2.10c)

S.p/ , a � �Re.‰p/ (2.10d)

yx.p/ , PC

�
S.p/

�
2 Rp: (2.10e)

When p 2 H , the objective function in (2.10b) is differentiable with respect to the real and imag-

inary parts of p. When ‰ is real-valued, the optimal yp must be real-valued and hence (2.10b)

reduces to optimization with respect to p over the unit hypercube.

The duality gap for the optimization problem (2.10b) is

G.p/ D �
˚
�
�
yx.p/

�
� yx

T
.p/Re.‰p/

	
C IH .p/: (2.11)

To simplify the notation, we omit the dependence of G.p/; yx.p/;S.p/ and yp on a and �. We

will add the subscripts “a;�” to these quantities when we wish to emphasize their dependence on

a and �.

The following proposition extends the result in [VSBV13, Sec. 2.1] to accommodate the com-

posite penalty (2.3b) that includes the indicator function IC .x/; ifC D Rp, it reduces to [VSBV13,

Prop. 2.3]. It can be used to guarantee the "-precision of the proximal mapping in (2.8).

Proposition 2.2. If the duality gap (2.11) satisfies G.p/ � "2=2, then

yx.p/ Ñ" prox�r a: (2.12)

Proof: Finite G.p/ implies p 2 H . Therefore, 0 � zT Re.‰p/ � �.z/ for all z 2 Rp

(see also (2.4)) and thus

G.p/=� � �
�
yx.p/

�
C Œz � yx.p/�T Re.‰p/ � �.z/: (2.13)
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Use the projection theorem [Ber15, Prop. 1.1.9 in App. B] to obtain

IC .z/ � Œz � yx.p/�T ŒS.p/ � yx.p/�=�: (2.14)

Adding (2.13), (2.14), and "2=.2�/ � G�.p/=� and reorganizing yields

r.z/ � r
�
yx.p/

�
C Œz � yx.p/�T Œa � yx.p/�=� � "2=.2�/ (2.15)

where we used (2.10d), (2.3b), and IC

�
yx.p/

�
D 0. According to Definition 1, (2.12) and (2.15)

are equivalent.

We introduce representative NLL functions (Section 2.2), describe the proposed PNPG signal

reconstruction algorithm (Section 2.3), establish its convergence properties (Section 2.4), present

numerical examples (Section 2.5), and make concluding remarks (Section 2.6).

2.2 Probabilistic Measurement Models

For numerical stability, we normalize the likelihood function so that the corresponding NLL

L.x/ is lower-bounded by zero.

2.2.1 Poisson Generalized Linear Model

GLMs with Poisson observations are often adopted in astronomic, optical, hyperspectral, and

tomographic imaging [PL15; HMW12; OF97] and are used to model event counts, e.g., numbers

of particles hitting a detector. Assume that the measurementsy D .yn/N
nD1 2 NN

0 are independent

Poisson-distributed1 with means Œ�.x/�n.
1Here, we use the extended Poisson probability mass function (pmf)Poisson.y j�/ D .�y=yŠ/ e�� for all� � 0

by defining 00 D 1 to accommodate the identity-link model.
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Upon normalization, we obtain the generalized Kullback-Leibler divergence form of the NLL

[ZBBR15]

L.x/ D 1T Œ�.x/ � y�C
X

n;yn¤0

yn ln
yn

Œ�.x/�n
: (2.16a)

The NLL L.x/ W Rp 7! RC is a convex function of the signal x. Here, the relationship between

the linear predictor ˆx and the expected value �.x/ of the measurements y is summarized by the

link function g.�/ W RN 7! RN [MN89]:

E.y/ D �.x/ D g�1.ˆx/: (2.16b)

Note that cl.domL/ D fx 2 Rp j �.x/ � 0g.

Two typical link functions in the Poisson GLM are log (described in [GD15d, Sec. I-A2], see

also [GD16a]) and identity:

g.�/ D � � b; �.x/ D ˆx C b (2.17)

used for modeling the photon count in optical imaging and radiation activity in emission tomog-

raphy [PL15, Ch. 9.2], as well as for astronomical image deconvolution. Here, ˆ 2 RN �p
C and

b 2 RN �1
C are the known sensing matrix and intercept term, respectively; the intercept b mod-

els background radiation and scattering estimated, e.g., by calibration before the measurements y

have been collected. The nonnegative set C in (2.2) satisfies (2.1), where we have used the fact

that the elements of ˆ are nonnegative. If b has zero components, C n domL is not empty and

the NLL does not have a Lipschitz-continuous gradient.
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2.2.2 Linear Model with Gaussian Noise

The linear measurement model with zero-mean additive white Gaussian noise (AWGN) leads

to the following scaled NLL:

L.x/ D 1
2
ky �ˆxk2

2 (2.18)

where y 2 RN is the measurement vector, and constant terms (not functions of x) have been

ignored. This NLL belongs to the Gaussian GLM with identity link without intercept: g.�/ D �.

Here, domL.x/ D Rp, any closed convex C satisfies (2.1), and the set C n domL is empty.

Minimization of the objective function (2.3a) with Gaussian NLL (2.18) and penalty (2.3b)

with �.x/ in (2.4) is an analysis basis pursuit denoising (BPDN) problem with a convex signal

constraint.

2.3 Reconstruction Algorithm

We propose a PNPG approach for minimizing (2.3a) that combines convex-set projection with

Nesterov acceleration [Nes83; BT09a] and applies adaptive step size to adapt to the local curva-

ture of the NLL and restart to ensure monotonicity of the resulting iteration. The pseudo code in

Algorithm 1 summarizes our PNPG method.

Define the quadratic approximation of the NLL L.x/ as

Qˇ .x j xx/ D L.xx/C .x � xx/T
rL.xx/C

1

2ˇ
kx � xxk2

2 (2.19)
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Algorithm 1: PNPG iteration
Input: x.0/, u, 
 , b, n, m, � , �, and threshold �

Output: argminx f .x/

Initialization: x.�1/  0, i  0, �  0, ˇ.1/ by the BB method
repeat

i  i C 1 and �  � C 1

while true do // backtracking search
evaluate (2.20a) to (2.20d)
if xx.i/

… domL then // domain restart
� .i�1/  1 and continue

solve the proximal mapping in (2.20e)
if majorization condition (2.21) holds or the number of backtrackings exceeds
tMAX then

break
else

if ˇ.i/ > ˇ.i�1/ then // increase n
n nCm

ˇ.i/  �ˇ.i/ and �  0

if f .x.i// > f .x.i�1// then
if (2.21) holds then

if xx.i/
¤ x.i�1/ and f .x.i// � f .xx.i// then // function restart

� .i�1/  1, i  i � 1, and continue
if � > �MIN and f .x.i// > f .xx.i// then // more accurate proximal

� �=10, i  i � 1, and continue

declare convergence
if convergence cond. (2.23a) holds with threshold � then

declare convergence
if � � n then // adapt step size

�  0 and ˇ.iC1/  ˇ.i/=�

else
ˇ.iC1/  ˇ.i/

until convergence declared or maximum number of iterations exceeded
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with step-size tuning constant ˇ > 0. Iteration i of the PNPG method proceeds as follows:

B.i/
D ˇ.i�1/=ˇ.i/ (2.20a)

� .i/
D

„
1; i � 1

1


C
p

b C B.i/.� .i�1//2; i > 1

(2.20b)

‚.i/
D .� .i�1/

� 1/=� .i/ (2.20c)

xx.i/
D PC

�
x.i�1/

C‚.i/.x.i�1/
� x.i�2//

�
(2.20d)

x.i/
D proxˇ .i/ur

�
xx.i/
� ˇ.i/

rL.xx.i//
�

(2.20e)

where ˇ.i/ > 0 is an adaptive step size chosen to satisfy the majorization condition

L.x.i// � Qˇ .i/.x.i/
j xx.i// (2.21)

using a simple adaptation scheme that aims at keeping ˇ.i/ as large as possible; see also Sec-

tion 2.3.2 and Algorithm 1. Here,


 � 2; b 2 Œ0; 1=4� (2.22)

in (2.20b) aremomentum tuning constants. We will denote � .i/ as �
.i/


;b
when we wish to emphasize

its dependence on 
 and b. We declare convergence when

p
ı.i/ � �kx.i/

k2 (2.23a)

where � > 0 is the convergence threshold and ı.i/ is the local variation of signal iterates:

ı.i/ , kx.i/
� x.i�1/

k
2
2: (2.23b)
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We need B.i/ in (2.20a) to derive the theoretical guarantee for the convergence speed of the

PNPG iteration and its sequence convergence. A similar idea for handling the increasing step size

in its TFOCS framework is seen in [BCG11]. However, [BCG11] does not address this modifica-

tion in detail or establish convergence properties of the corresponding method.

The acceleration step (2.20d) extrapolates the two latest iteration points in the direction of their

difference x.i�1/�x.i�2/, followed by the projection onto the convex set C , which has also been

proposed in our preliminary work [GD15c] and in the variable-metric/scaling method [BPR16].

For nonnegative C in (2.2), this projection has closed form; see (2.6c). If C is an intersection of

convex sets with a simple individual projection operator for each, we can apply projections onto

convex sets (POCS) [YW82].

For �.x/ in (2.4), we compute the proximal mapping (2.20e) using the dual formulation in

(2.10) and a simpler version of PNPG, Nesterov’s projected-gradient algorithm, because the prox-

imal step in this case reduces to projection onto H in (2.10c); for the TV penalty, this method is

similar to the TV denoising scheme in [BT09b]. Because of its iterative nature, (2.20e) is inexact;

this inexactness can be modeled as

x.i/ Ñ".i/ proxˇ .i/ur

�
xx.i/
� ˇ.i/

rL.xx.i//
�

(2.24)

where ".i/ quantifies the precision of the PG step in Iteration i .

If we remove the convex-set constraint by setting C D Rp, iteration (2.20a)–(2.20e) reduces

to the Nesterov’s proximal-gradient iteration with adaptive step size that imposes signal sparsity

only in the analysis form (termed NPGS); see Section 2.5.2 for an illustrative comparison between

NPGS and PNPG.

We now extend [BT09a, Lemma 2.3] to the inexact proximal operation:
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Figure 2.1: Step sizes ˇ.i/ as functions of the number of iterations for Poisson and Gaussian linear
models.

Lemma 2.1. Assume convex and differentiable NLL L.x/ and convex �.x/, and consider an

inexact PG step (2.24) with step size ˇ.i/ that satisfies the majorization condition (2.21). Then,

f .x/ � f .x.i// �
1

2ˇ.i/

�
kx.i/

� xk2
2 � kxx

.i/
� xk2

2 � .".i//2
�

(2.25)

for all i � 1 and any x 2 Rp.

Proof: See Appendix 2.A.

Lemma 2.1 is general and algorithm independent, because xx.i/ can be any value in domL

and we have used only the fact that step size ˇ.i/ satisfies the majorization condition (2.21), rather

than depending on specific details of the step-size selection. We use this result to establish the

monotonicity property in Proposition 2.3 and to derive and analyze our accelerated PG scheme.

2.3.1 Restart and Monotonicity

If f .xx.i// > f .x.i// > f .x.i�1// or xx.i/
2 C n domL, set

� .i�1/
D 1 (restart), (2.26)



www.manaraa.com

20

re-evaluate (2.20b)–(2.20e), and refer to this action as function restart [OC15] or domain restart,

respectively; see Algorithm 1. Function and domain restarts ensure that the PNPG iteration is

monotonic and xx.i/ remains within dom f as long as the projected initial value is within dom f :

f .PC .x.0/// < C1. In this chapter, we employ PNPG iteration with restart, unless specified

otherwise (e.g., in Theorems 2.1 and 2.2 in Section 2.4).

Proposition 2.3 (Monotonicity). The inexact PG step (2.24) is monotonic:

f .x.i// � f .xx.i// (2.27a)

if it is sufficiently accurate such that

".i/
� kxx.i/

� x.i/
k2: (2.27b)

Hence, the PNPG iteration with restart and inexact PG steps (2.24) is non-increasing:

f .x.i// � f .x.i�1// (2.28)

if (2.27b) holds for all i .

Proof: (2.27a) is straightforward by plugging x D xx.i/ and (2.27b) into (2.25).

If there is no restart in Iteration i , the objective function has not increased. If there is a restart,

� .i�1/ D 1, (2.20d) simplifies to xx.i/
D PC .x.i�1// D x.i�1/, and monotonicity follows due to

xx.i/
D x.i�1/.

To establish the monotonicity in Proposition 2.3, the step size ˇ.i/ need satisfy only the ma-

jorization condition (2.21).
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2.3.2 Adaptive Step Size

Define the step-size adaptation parameter

� 2 .0; 1/: (2.29)

We propose the following adaptive scheme for selecting ˇ.i/:

i) • if there have been no step-size backtracking events or increase attempts for n consec-

utive iterations (i � n to i � 1), start with a larger step size:

x̌.i/
D ˇ.i�1/=� (increase attempt); (2.30a)

• otherwise start with

x̌.i/
D ˇ.i�1/

I (2.30b)

ii) (backtracking search) select

ˇ.i/
D � ti x̌.i/ (2.30c)

where 0 � ti � tMAX is the smallest integer such that (2.30c) satisfies (2.21); backtracking

event corresponds to ti > 0.

iii) ifmax.ˇ.i/; ˇ.i�1// < x̌.i/, increase n by a nonnegative integer m:

n nCm: (2.30d)

We select the initial step size x̌.1/ using the BB method [BB88]. If there has been an attempt

to change the step size in any of the previous n consecutive iterations, we start the backtracking
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search ii) with the step size from the latest completed iteration. Consequently, ˇ.i/ will be approx-

imately piecewise constant as a function of the iteration index i ; see Fig. 2.1, which shows the

evolutions of ˇ.i/ for measurements following the Poisson generalized linear and Gaussian linear

models corresponding to Figs. 2.4a and 2.6b in Sections 2.5.1 and 2.5.2. To reduce sensitivity

to the choice of the tuning constant n, we increase its value by m if there is a failed attempt to

increase the step size in Iteration i ; i.e., x̌.i/ > ˇ.i�1/ and ˇ.i/ < x̌.i/.

The adaptive step-size strategy keeps ˇ.i/ as large as possible subject to (2.21), which is impor-

tant not only because the signal iterate may reach regions of L.x/ with different local Lipschitz

constants, but also because of the varying curvature of L.x/ in different updating directions. For

example, a (backtracking-only) PG-type algorithm with non-adaptive step size would fail or con-

verge very slowly if the local Lipschitz constant of rL.x/ decreases as the algorithm iterates,

because the step size will not adjust and track this decrease; see also Section 2.5, which demon-

strates the benefits of step-size adaptation.

Setting n D C1 corresponds to step-size backtracking only. A step-size adaptation scheme

with n D m D 0 initializes the step-size search aggressively, with an increase attempt (2.30a) in

each iteration.

2.3.3 Inner-Iteration Warm Start and Convergence Criteria

For �.x/ in (2.4), the inner iteration solves (2.20e) using the dual problem (2.10b). Denote by

p.i;j / the iterates of the dual variable p in the j th inner iteration step within Iteration i ; this inner

iteration solves (2.20e) using (2.10b). The initial p.i;0/ is the latest p from Iteration i � 1, which

is referred to in [VSBV13] as the warm restart. (The variable metric inexact line-search algorithm

(VMILA) [BLPP16] also uses warm restart.)

We consider two convergence criteria. The first tracks local variation of the signal iterates

(2.23b):

kx.i;j /
� x.i;j �1/

k � �
p

ı.i�1/ (2.31a)

where � is a tuning constant.
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The second duality-gap–based criterion relies on the result in Proposition 2.2 to guarantee

that .� .k/".k//2 decreases at a rate of O.k�q/ within each iteration segment without restart; this

guarantee allows us to control the decrease of the convergence-rate upper bound in Section 2.4.

Denote by �i the iteration index of the latest restart prior to (and excluding) Iteration i (i � 1); set

its initial value �1 D 0. We select the duality-gap based inner-iteration convergence criterion as

(see also (2.10e) and (2.11))

G.i;j /

ˇ.i/u �
�
yx

.i;j /
� � �

.i � �i/q.� .i//2
(2.31b)

where � is a tuning constant and q is the accuracy rate [VSBV13]. Here, G.i;j / and yx.i;j /

are the duality gap Ga;�.p.i;j // and yxa;�.p.i;j // in (2.11) and (2.10e) (respectively) for a D

xx.i/
� ˇ.i/rL.xx.i// and � D ˇ.i/u. Without restart (i.e., �i � 0) and step-size adaptation, (2.31b)

reduces to the inner-iteration convergence criterion in [VSBV13, Sec. 6.1].

Adjusting �. We use � in (2.31a)–(2.31b) to trade off accuracy and speed of the inner iterations.

If f .x.i// > max
�
f .x.i�1//; f .xx.i//

�
indicating that themonotonicity condition (2.27b) does not

hold, we decrease � by an order of magnitude (10 times) and re-evaluate (2.20a)–(2.20e).

2.4 Convergence Analysis

We now bound the convergence rate of the PNPG method without restart.

Theorem 2.1 (Convergence of the Objective Function). Assume that the NLL L.x/ is convex and

differentiable, �.x/ is convex, the closed convex set C satisfies

C � domL (2.32)

(implying no need for domain restart), and the momentum tuning constants are within the range

(2.22). Consider the PNPG iteration without restart with the inexact PG step (2.24) in place of
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(2.20e). The convergence rate of the PNPG iteration is bounded as follows: for k � 1,

�.k/
�
kx.0/ � x?k2

2 C E .k/

2ˇ.k/.� .k//2
(2.33a)

� 
2 kx.0/ � x?k2
2 C E .k/

2
�p

ˇ.1/ C
Pk

iD1

p
ˇ.i/

�2 (2.33b)

where x? is a minimum point of f .x/ and

�.k/ , f .x.k// � f .x?/ (2.34a)

E .k/ ,
kX

iD1

.� .i/".i//2 (2.34b)

are the centered objective function and the cumulative error term, which accounts for the inexact

PG steps, respectively.

Proof: See Appendix 2.A for the proof of (2.33a); then, to obtain (2.33b), use

� .k/

q
ˇ.k/ �

1




q
ˇ.k/ C � .k�1/

q
ˇ.k�1/ (2.35a)

�
1




kX
iD2

q
ˇ.i/ C � .1/

q
ˇ.1/ (2.35b)

for all k > 1, where (2.35a) follows from the definitions of B.k/ and � .k/ in (2.20a) and (2.20b),

and (2.35b) follows by repeated application of the inequality (2.35a) with k replaced by k�1; k�

2; : : : ; 2.

Theorem 2.1 shows that better initialization, smaller proximal-mapping approximation error,

and larger step sizes .ˇ.i//k
iD1 help lower the convergence-rate upper bounds in (2.33). This result

motivates our step-size adaptation with the goal of maintaining large .ˇ.i//k
iD1; see Section 2.3.2.

To derive this theorem, we have used only the fact that the step size ˇ.i/ satisfies the majorization

condition (2.21), rather than taking advantage of specific details of the step-size selection.

To minimize the upper bound in (2.33a), we can select � .i/ to satisfy (2.63b) with equality,

which corresponds to �
.i/

2;1=4
in (2.20b), on the boundary of the feasible region in (2.22). By (2.35a),
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p
ˇ.k/� .k/ and the denominator of the bound in (2.33a) are strictly increasing sequences. The

upper bound in (2.33b) is not a function of b and is minimized with respect to 
 for 
 D 2, given

the fixed step sizes .ˇ.i//C1
iD0 .

Corollary 2.1. Under the assumptions of Theorem 2.1, the convergence of PNPG iteration x.k/

without restart is bounded as follows:

�.k/
� 
2kx

.0/ � x?k2
2 C E .k/

2.k C 1/2ˇmin
(2.36a)

for k � 1, provided that

ˇmin ,
C1

min
kD1

ˇ.k/ > 0: (2.36b)

Proof: Use (2.33b) and the fact that
p

ˇ.1/ C
Pk

iD1

p
ˇ.i/ � .k C 1/

p
ˇmin.

The assumption (2.36b) is implied by, and weaker than, the Lipschitz continuity of rL.x/;

indeed, ˇmin > �=L if rL.x/ has a Lipschitz constant L; see also (2.29).

According to Corollary 2.1, the PNPG iteration attains the O.k�2/ convergence rate as long

as the step size ˇ.i/ is bounded away from zero (see (2.36b)) and the cumulative error term (2.34b)

converges:

E .C1/ , lim
k!C1

E .k/ < C1 (2.37)

which requires that .� .k/".k//2 decreases at a rate of O.k�q/ with q > 1. This condition, also

key for establishing convergence of iterates in Theorem 2.2, motivates us to use decreasing conver-

gence criteria (2.31a)–(2.31b) for the inner proximal-mapping iterations, where (2.31b) guarantees

(2.37) upon choosing an appropriate q.

We now contrast our result in Theorem 2.1 with existing work on accommodating inexact prox-

imal mappings in PG schemes. By recursively generating a function sequence that approximates

the objective function, [VSBV13] gives an asymptotic analysis of the effect of ".i/ on the conver-
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gence rate of accelerated PG methods with inexact proximal mapping. However, no explicit upper

bound is provided for �.k/. Schmidt, Roux, and Bach [SRB11] provide convergence-rate analy-

sis and an upper bound on �.k/, but their analysis does not apply here because it relies on fixed

step-size assumption, uses different form of acceleration [SRB11, Prop. 2], and has no convex-

set constraint. Bonettini, Loris, Porta, and Prato [BLPP16] analyze the inexactness of proximal

mapping but for proximal variable-metric/scaling methods with O.k�1/ convergence rate for the

objective function.

We now establish convergence of the PNPG iterates.

Theorem 2.2 (Convergence of Iterates). Assume that

1) the conditions of Theorem 2.1 hold;

2) E .C1/ exists: (2.37) holds;

3) the momentum tuning constants .
; b/ satisfy


 > 2; b 2 Œ0; 1=
2�I (2.38)

4) the step-size sequence .ˇ.i//C1
iD1 is bounded within the range Œˇmin; ˇmax�, for ˇmin > 0.

Consider the PNPG iteration without restart with the inexact PG step (2.24) in place of (2.20e).

Then, the sequence of PNPG iterates x.i/ converges to a minimizer of f .x/.

Proof: See Appendix 2.B.

Observe that Assumption 3 requires a narrower range of .
; b/ than (2.22): indeed (2.38) is a

strict subset of (2.22). The intuition is to leave a sufficient gap between the two sides of (2.63a) so

that their difference becomes a quantity that is roughly proportional to the growth of � .i/, which

is important for proving the convergence of signal iterates [CD15]. Although the momentum term

(2.20b) with 
 D 2 is optimal in terms of minimizing the upper bound on the convergence rate (see

Theorem 2.1), it appears difficult or impossible to prove convergence of the signal iterates x.i/ for
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this choice of 
 because, in this case, the gap between the two sides of (2.63a) is upper-bounded

by a constant.

Iterate convergence results in [BPR16; AD15; CD15] apply to momentum-accelerated meth-

ods that require non-increasing step-size sequences and do not adjust to the local curvature of the

NLL. Aujol and Dossal [AD15] analyze both the convergence of the objective function and the

iterates with inexact proximal operator for B.1/ D 1 and n D 1, i.e., with decreasing step size

only, and for a different (less aggressive) � .i/ than ours in (2.20b). Bonettini, Porta, and Ruggiero

use the ideas from [CD15] to establish convergence of iterates for their variable-metric/scaling

approach in [BPR16], but this analysis does not account for inexact proximal steps.

2.4.1 O.k�2/ Convergence Acceleration Approaches

A few variants that accelerate the PG method achieve the O.k�2/ convergence rate [BCG11,

Sec. 5.2]. One competitor proposed by Auslender and Teboulle in [AT06, Sec. 5] and restated in

[BCG11] where it was referred to as AT, replaces (2.20d)–(2.20e) with

xx.i/
D

�
1 �

1

� .i/

�
x.i�1/

C
1

� .i/
zx

.i�1/ (2.39a)

zx
.i/
D prox�.i/ˇ .i/ur

�
zx

.i�1/
� � .i/ˇ.i/

rL.xx.i//
�

(2.39b)

x.i/
D

�
1 �

1

� .i/

�
x.i�1/

C
1

� .i/
zx

.i/ (2.39c)

where � .i/ D �
.i/

2;1=4
in (2.20b). Here, ˇ.i/ in the TFOCS implementation [BCG11] is selected

using the aggressive search with n D m D 0.

All intermediate signals in (2.39a)–(2.39c) belong to C and do not require projections onto

C . However, as � .i/ increases with i , step (2.39b) becomes unstable, especially when an iterative

solver is needed for its proximal operation. To stabilize its convergence, AT relies on periodic

restart by resetting � .i/ using (2.26) [BCG11]. However, the period of restart is a tuning parameter

that is not easy to select. For a linear Gaussian model, this period varies according to the condition
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number of the sensing matrix ˆ [BCG11], which is generally unavailable and not easy to compute

for large-scale problems. For other models, there are no guidelines how to select the restart period.

In Section 2.5, we show that AT converges slowly comparedwith PNPG,which justifies the use

of projection ontoC in (2.20d) and (2.20d)–(2.20e) instead of (2.39a)–(2.39c). PNPG usually runs

uninterrupted (without restart) over long stretches and benefits fromNesterov’s acceleration within

these stretches, which may explain its better convergence properties compared with AT. PNPG

may also be less sensitive than AT to proximal-step inaccuracies; we have established convergence-

rate bounds for PNPG that account for inexact proximal steps (see (2.33) and (2.36a)), whereas

AT does not yet have such bounds, to the best of our knowledge.

2.4.1.1 Relationship with FISTA

The PNPG method is a generalized FISTA [BT09a] that accommodates convex constraints,

more general NLLs,2 and (increasing) adaptive step size. In contrast with PNPG, FISTA has a

non-increasing step size ˇ.i/, which allows for setting B.i/ D 1 in (2.20b) for all i (see Ap-

pendix 2.A.2); upon setting .
; b/ D .2; 1=4/, this choice yields the standard FISTA (and Nes-

terov’s [Nes83]) update. Convergence of signal iterates has not been established for FISTA with

.
; b/ D .2; 1=4/ [DDD16]. Theorem 2.2 comes close to this goal because it establishes conver-

gence of iterates of PNPG and corresponding FISTA for .
; b/ arbitrarily close to .2; 1=4/.

The method in [BPR16] is a variable-metric/scaling version of FISTA with projection of the

extrapolation step to account for the convex constraints. [BN16] analyzes a version of FISTA

where the (decreasing) step size is adjusted using a condition in [Tse00] different from the ma-

jorization condition (2.21), and establishes objective-function convergence under the assumption

that the step size is lower bounded. As FISTA, [BPR16] and [BN16] do not adapt the step size

and hence do not adjust to the local curvature of the NLL.
2FISTA has been developed for the linear Gaussian model in Section 2.2.2.
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2.5 Numerical Examples

We now evaluate our proposed algorithm by means of numerical simulations. We adopt the

nonnegativeC in (2.2) and the `1-norm sparsifying penalty in (2.4). The PNPG iterations with the

local-variation and duality-gap inner convergence criteria (2.31a) and (2.31b) are labeled PNPG

and PNPGd, respectively.

All iterative methods that we compare use the convergence criterion (2.23a) with

� D 10�9 (2.40)

and have the maximum number of iterations Imax D 104. In the presented examples, PNPG

uses momentum tuning constants .
; b/ D .2; 1=4/ and adaptive step-size parameters n D 4

(unless specified otherwise), m D n, � D 0:8, inner-iteration convergence constants � D 10�2

and .�; q/ D .1; 1:0001/ for PNPG and PNPGd (respectively), and maximum number of inner

iterations Jmax D 1000. Here, PNPGd uses q D 1:0001 with goal to guarantee (2.37).

We apply the AT method (2.39) implemented in the TFOCS package [BCG11] with adap-

tive step size and a periodic restart every 200 iterations (tuned for its best performance) and our

proximal mapping. Our inner convergence criteria (2.31b) cannot be implemented in the TFOCS

package (i.e., it require editing its code). Hence, we select the proximal mapping that has a relative-

error inner convergence criterion

kp.i;j /
� p.i;j �1/

k2 � �0
kp.i;j /

k2; (2.41a)

where p.i;j / is the dual variable employed by the inner iterations. This relative-error inner conver-

gence criterion is easy to incorporate into the TFOCS software package [BCG11] and is already

used by the SPIRAL package; see [Har]. Here, we select

�0
D 10�6 (2.41b)

for both AT and SPIRAL and set their maximum number of inner iterations to 100.
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We apply the CP approach based on [AABM12, Sec. 7.5]:

z prox�1F �

�
zC �1ˆxx

�
(2.42a)

p PuH .p C �2‰H
xx/ (2.42b)

xx  2PC

�
x � �

�
ˆT zC Re.‰p/

��
� x (2.42c)

x  .xx C x/=2 (2.42d)

obtained by splitting the objective function (2.3a) into the sum of F.ˆx/Cuk‰Hxk1 and IC .x/,

where the first summand is a convex lower semicontinuous function of ŒˆH ‰�Hx and F.ˆx/ D

L.x/. In our examples in Sections 2.5.1 and 2.5.2, F.y/ and its convex conjugate F �.z/ have

analytical proximal operators [AABM12, Sec. 7.4]; hence, CP does not require an inner iteration.

In the original CP algorithm in [CP11a], Chambolle and Pock select �1 D �2 D � . However,

when the difference between kˆk2 and k‰k2 becomes large, it is hard to find tuning constants of

the form .�1; �2; �/ D .�; �; �/ that ensure fast convergence of the CP algorithm, which is why

we do not impose �1 D �2 D � here. Another version of CP can be obtained by associating the

regularization parameter u with ‰ instead of the `1-norm function, which leads to replacing uH

with H and ‰; ‰H with u‰; u‰H , respectively, in (2.42). In this chapter, we adopt the version

of CP in (2.42).

All the numerical examples were performed on a Linux workstation with an Intel Xeon CPU

E31245 (3.30GHz) and 8GB memory. The operating system is Ubuntu 14.04 LTS (64-bit). The

Matlab implementation of the proposed algorithms and numerical examples is available [Gu].

2.5.1 PET Image Reconstruction from Poisson Measurements

In this example, we adopt the Poisson GLM (2.16a) with identity link in (2.17). Consider PET

reconstruction of the 128 � 128 concentration map x in Fig. 2.2a, which represents simulated

radiotracer activity in the human chest. Assume that the corresponding 128�128 attenuation map

� is known, which is needed to model the attenuation of the gamma rays [OF97] and compute the
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(a) radio-isotope concentration

RSE=3.09%

(b) FBP

RSE=0.66%

(c) DWT

RSE=0.22%

(d) TV

Figure 2.2: (a) True emission image and (b)–(d) the reconstructions of the emission concentration
map.

sensing matrix ˆ in this application. We collect the photons from 90 equally spaced directions

over 180°, with 128 radial samples in each direction. Here, we adopt the parallel strip-integral

matrix � [Fes09, Ch. 25.2] and use its implementation in the Image Reconstruction Toolbox (IRT)

[Fes16] with sensing matrix

ˆ D w diag
�
expı.���C c/

�
� (2.43)

where c is a known vector generated using a zero-mean independent, identically distributed (i.i.d.)

Gaussian sequence with variance 0:3 to model the detector efficiency variation; w > 0 is a known

scaling constant controlling the expected total number of detected photons due to electron-positron

annihilation; and 1T E.y�b/ D 1T ˆx, which is a signal-to-noise ratio (SNR) measure. Assume

that the background radiation, scattering effect, and accidental coincidence combined lead to a

known (generally nonzero) intercept term b in the Poisson GLM (2.17). The elements of the

intercept term have been set to a constant equal to 10% of the sample mean of ˆxtrue: b D

.1T ˆxtrue/=.10N /1.

The above model, choices of parameters in the PET system setup, and concentration map have

been adopted from IRT [Fes16, emission/em_test_setup.m].

Here, we consider the DWT and isotropic TV sparsifying transforms. We use the 2-D Haar

DWT with 6 decomposition levels and a full circular mask [DGQ11] to construct a sparsifying
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(a) DWT, 1T ˆxtrue D 108, a D 0:5
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(b) TV, 1T ˆxtrue D 107, a D 0

Figure 2.3: Normalized centered objectives as functions of the number of iterations for (a) DWT
and (b) TV regularizations.

dictionary matrix ‰ 2 R12 449 � 14 056 with orthonormal rows, i.e., ‰‰T D I , which allows

efficient inner iteration. We compare the filtered backprojection (FBP) [OF97] and PG methods

that aim at minimizing (2.3) with nonnegativeC in (2.2) and DWT and TV sparsifying transforms.

We implemented SPIRAL with TV penalty using the centered NLL term (2.16a), which im-

proves the numerical stability compared with the original code in [Har]. We do not compare with

SPIRAL that uses DWT penalty because its inner iteration for the proximal step requires a square

orthogonal‰ (see [HMW12, Sec. II-B]), which is not the case here. We also compare with VMILA

[BLPP16; BLPP] with both DWT and TV penalties and its default tuning constants, which yield

good performance; hence VMILA is insensitive to tuning.

In this example, we adopt the following form of the regularization constant u:

u D 10a; (2.44)

vary a in the range Œ�6; 3� with a grid size of 0.5, and search for the reconstructions with the best

average relative square error (RSE) performance; here,RSE D kyx � xtruek
2
2=kxtruek

2
2, wherextrue

and yx are the true and reconstructed signals, respectively. All iterative methods were initialized

by FBP reconstructions implemented by IRT [Fes16].
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Figure 2.4: Normalized centered objectives as functions of the CPU time for (a) DWT and (b) TV
regularizations.

Figs. 2.2b-2.2d show reconstructions and corresponding RSEs for one random realization of

the noise and detector variation c, with the expected total annihilation photon count (SNR) equal

to 108; the optimal a is 0.5. All sparse reconstruction methods (PNPG, AT, CP, SPIRAL, and

VMILA) perform similarly as long as they employ the same penalty: the TV sparsity penalty is

superior to its DWT counterpart; see [GD16b, Fig. 6] which shows average RSEs of different

methods as functions of 1T ˆxtrue.

Figs. 2.3 and 2.4 show the normalized centered objectives �.i/=f .x?/ as functions of the

number of iterations and CPU time for the DWT and TV signal sparsity regularizations and two

random realizations of the noise and detector variation with different total expected photon counts.

The legends in Figs. 2.3b and 2.4b apply to Figs. 2.3a and 2.4a as well. Fig. 2.3 examines the

convergence of PNPG as a function of the momentum tuning constants .
; b/ in (2.22), using


 2 f2; 5; 15g and b 2 f0; 1=4g. For small 
 � 5, there is no significant difference between

different selections and no choice is uniformly the best, consistent with [CD15] which considers

only b D 0 and non-adaptive step size. As we increase 
 further (
 D 15), we observe slower

convergence. In the remainder of this section, we use .
; b/ D .2; 1=4/.

To illustrate the benefits of step-size adaptation, we present in Fig. 2.4 the performance of

PNPG (n D 1), which does not adapt to the local curvature of the NLL and has monotonically
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non-increasing step sizes ˇ.i/, similar to FISTA. PNPG (n D 4) outperforms PNPG (n D 1)

because it uses step-size adaptation; see also Fig. 2.1a, which corresponds to Fig. 2.4a and shows

that the step size of PNPG (n D 4) is consistently larger than that of PNPG (n D1). Initializing

PNPG iterations by a vector close to 0 (rather than with FBP) will lead to an even larger difference

in convergence speed between PNPG (n D1) and PNPG (n D 4). The advantage of PNPG (n D

4) over the aggressive PNPG (n D 0) scheme is due to the patient nature of its step-size adaptation,

which leads to a better local majorization function of the NLL and reduces time spent backtracking.

Indeed, if we do not account for the time spent on each iteration and only compare the objectives

as functions of the iteration index, then PNPG (n D 4) and PNPG (n D 0) perform similarly; see

[GD15c, Fig. 4]. Although PNPG (n D 0) and AT have the same step-size selection strategy and

O.k�2/ convergence-rate guarantees, PNPG (n D 0) converges faster; both schemes are further

outperformed by PNPG (n D 4). Fig. 2.4b shows that SPIRAL, which does not employ PG step

acceleration, takes at least three times longer than PNPG (n D 4) to reach the same objective

function.

In Fig. 2.4b, AT and SPIRAL reach the performance floor due to their fixed inner convergence

criterion in (2.41a); we observe a performance floor for AT in Fig. 2.4a as well. Reducing �0 in

(2.41b) will lower this floor, at the cost of slowing down the two algorithms. This result justifies

our convex-set projection in (2.20d) for the Nesterov’s acceleration step, shows the superiority

of (2.20d) over AT’s acceleration in (2.39a) and (2.39c), and is consistent with the results in Sec-

tion 2.5.2.

PNPGd (n D 4) employs the duality-gap–based inner convergence criterion (2.31b) with q D

1:0001. Since the goal of using (2.31b) is to guarantee (2.37), this inner criterion is more stringent

and leads to slower overall performance of PNPGd (n D 4) compared to PNPG (n D 4). Indeed, if

we do not account for the time spent on each iteration and only compare the objectives as functions

of the iteration index, then PNPGd (n D 4) and PNPG (n D 4) perform similarly with the former

slightly better.
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Figure 2.5: Nonnegative skyline signal and its PNPG and NPGS reconstructions for N=p D 0:34.

The CP method uses the following tuning constants carefully selected for this particular prob-

lem: .�1; �2; �/ D .10�6; 1; 10�3/ and .�1; �2; �/ D .10�4; 1; 10�2/ for the DWT and TV penal-

ties, respectively. CP is sensitive to tuning and a different selection of .�1; �2; �/ can significantly

slow down its convergence. Initially, CP converges quickly and then slows down as it approaches

the optimum.

Considering its O.k�1/ theoretical convergence rate, VMILA performs quite well, thanks to

its use of the variable-metric/scaling approach.

2.5.2 Skyline Signal Reconstruction from Linear Measurements

We adopt the DWT sparsifying transform and linear measurement model with Gaussian noise

in Section 2.2.2 where each column of the sensing matrix ˆ are i.i.d. and drawn from the uniform

distribution on unit sphere. Due to the widespread use of this measurement model, we can compare

a wider range of methods than in the Poisson PET example in Section 2.5.1.

We have designed a “skyline” signal of lengthp D 1024 by overlappingmagnified and shifted

triangle, rectangle, sinusoid, and parabola functions; see Fig. 2.5a. We generate the noiseless mea-

surements using y D ˆxtrue. The DWT matrix ‰ is constructed using the Daubechies-4 wavelet

with three decomposition levels whose approximation by the 5% largest-magnitude wavelet coef-

ficients achieves RSE D 98%. We compare:

• AT, PNPG, and PNPGd;
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• CP with the parameters �2 D �1 [CP11a] and � D 1 with �1 tuned separately for best perfor-

mance in each experiment;3

• linearly constrained gradient projection method [HTWM10], part of the SPIRAL toolbox [Har]

and labeled SPIRAL herein;

• the GFB method [RFP13] (see (2.4)):

z1  z1 C �
�
prox.ru=w/�.2x � z1 � rrL.x// � x

�
(2.45a)

z2  z2 C �ŒPC .2x � z2 � rrL.x// � x� (2.45b)

x  wz1 C .1 � w/z2 (2.45c)

with r D 1:9=kˆk2
2, � D 1, and w D 0:5 tuned for best performance; and

• the PDS method [Con13]:

Nz PŒ�u;u�p.zC �‰Tx/ (2.46a)

Nx  PC

�
x � �rL.x/ � �‰.2Nz � z/

�
(2.46b)

z zC r.Nz � z/ (2.46c)

x  x C r. Nx � x/ (2.46d)

where we choose � D 1=.� C kˆk2
2=2/ and r D 2 � 0:5kˆk2

2.��1 � �/�1 with � tuned for

best performance,4

all of which aim to solve the generalized analysis BPDN problem with a convex signal constraint.

Here, p0 D p, ‰ 2 Rp�p is an orthogonal matrix (‰‰T D ‰T ‰ D I ), and prox�� a D

‰ T �.‰Ta/ has a closed-form solution (see (2.6c)), which simplifies the implementation of the

GFB method ((2.45a), in particular); see the discussion in Section 2.1. The other tuning options

for SPIRAL, and AT are kept to their default values, unless specified otherwise.
3We select �1 D �2 as in [CP11a] because kˆk2 and k‰k2 have approximately the same scale in this example.
4 These choices of � and r are at the boundary of the convergence region in [Con13, Th. 3.1]. We have searched

for � and r inside this convergence region as well, but found that the boundary choices that we select are the best, or
close to the best.
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Figure 2.6: Normalized centered objectives as functions of CPU time for normalized numbers of
measurements N=p D 0:34 and different regularization constants a.

We initialize the iterative methods by the approximate minimum-norm estimate: x.0/ D

ˆT ŒE.ˆˆT /��1y D NˆTy=p and select the regularization parameter u as

u D 10aU; U , k‰T
rL.0/k1 (2.47)

where a is an integer selected from the interval Œ�9;�1� and U is an upper bound on u of interest.

Indeed, the minimum point x? reduces to 0 if u � U [GD15d, Sec. II-D].

As before, PNPG (n D 4) and PNPG (n D 0) converge at similar rates as functions of the

number of iterations. However, due to the excessive attempts to increase the step size at every iter-

ation, PNPG (n D 0) spends more time backtracking and converges at a slower rate as a function

of CPU time compared with PNPG (n D 4); see also Fig. 2.1b which corresponds to Fig. 2.6b and

shows the step sizes as functions of the number of iterations for a D �4 andN=p D 0:34. Hence,

we present only the performances of PNPG with n D 4 in this section.

Fig. 2.5 shows the advantage brought by the convex-set nonnegativity signal constraints (2.2).

Figs. 2.5b and 2.5c present the PNPG .a D �5/ and NPGS .a D �4/ reconstructions from one

realization of the linearmeasurements withN=p D 0:34 and a tuned for the best RSE performance.

Recall that NPGS imposes signal sparsity only. Here, imposing signal nonnegativity significantly

improves the overall reconstruction and does not simply rectify the signal values close to zero.
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Fig. 2.6 presents the normalized centered objectives �.i/=f .x?/ as functions of CPU time for

a random realization of the sensing matrix ˆ with normalized numbers of measurements N=p D

0:34 and several different regularization constants a. (For the GFB method, we compute the nor-

malized centered objectives using PC .x.i// instead of x.i/ in (2.34a) because its x.i/ may be

outside C .) The legend in Fig. 2.6c applies also to Figs. 2.6a and 2.6b. To achieve good perfor-

mance, CP and PDS need to be manually tuned for each a. CP and PDS have optimal �1 D �2

equal to 0:01; 0:1; 1 and 0:0026; 0:026; 2:6 for a D �5;�4;�3, respectively.

PNPG and PNPGd have the steepest descent rate, followed by PNPGd. AT and SPIRAL reach

the performance floor around the relative precision of 10�6 due to their fixed inner convergence

criterion in (2.41a). The GFB and primal-dual methods, PDS and CP, are sensitive to the selection

of the tuning constants. After a careful selection of the tuning constants, CP performs exceptionally

well in Figs. 2.6a and 2.6b. The performance of GFB is affected significantly by the value of the

regularization parameter a.

2.6 Conclusion

We developed a fast algorithm for reconstructing sparse signals that belong to a closed convex

set by employing a projected proximal-gradient scheme with Nesterov’s acceleration, restart, and

adaptive step size. We applied the PNPGmethod to construct one of the first Nesterov-accelerated

proximal-gradient reconstruction algorithm for Poisson compressed sensing. We presented inte-

grated derivation of the proposed algorithm and convergence-rate upper bound that accounts for

inexactness of the proximal operator and also proved convergence of iterates. Our PNPG approach

is computationally efficient compared with other state-of-the-art methods.
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Appendices

2.A Derivation of Acceleration (2.20a)–(2.20d) and

Proofs of Lemma 2.1 and Theorem 2.1

We first prove Lemma 2.1 and then derive the acceleration (2.20a)–(2.20d) and prove Theo-

rem 2.1.

Proof of Lemma 2.1: According to Definition 1 and (2.24),

ur.x/ � ur.x.i//C .x � x.i//T
h
xx.i/
� x.i/

ˇ.i/
� rL.xx.i//

i
�

.".i//2

2ˇ.i/
(2.48a)

for any x 2 Rp. Moreover, due to the convexity of L.x/,

L.x/ � L.xx.i//C .x � xx.i//T
rL.xx.i//: (2.48b)

Summing (2.48a), (2.48b), and (2.21) completes the proof.

The following result from [Ber15, Prop. 3.2.1 in Sec. 3.2] states that the distance between x

and y can be reduced by projecting them onto a closed convex set C .

Lemma 2.2 (Projection theorem). The projection mapping onto a nonempty closed convex set

C � Rp is nonexpansive

kPC .x/ � PC .y/k2
2 � kx � yk

2
2 (2.49)

for all x;y 2 Rp.

We now derive the projected Nesterov’s acceleration step (2.20b)–(2.20d) with the goal of

selecting the xx.i/ in the proximal step (2.20e) that achieves the convergence rate ofO.k�2/. This

derivation and convergence-rate proof are inspired by—but are more general than—[BT09a]. We
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start from (2.25) with x replaced by x D x? and x D x.i�1/,

��.i/
�
kx.i/ � x?k2

2 � kxx
.i/
� x?k2

2 � .".i//2

2ˇ.i/
(2.50a)

�.i�1/
��.i/

�
ı.i/ � kxx.i/

� x.i�1/k2
2 � .".i//2

2ˇ.i/
(2.50b)

and design two coefficient sequences a.i/ > 0 and b.i/ > 0 that multiply (2.50a) and (2.50b),

respectively, which ultimately leads to (2.20a)–(2.20d) and the convergence-rate guarantee in

(2.33a).

Consider sequences a.i/ > 0 and b.i/ > 0. Multiply them by (2.50a) and (2.50b), respectively,

add the resulting expressions, and multiply by ˇ.i/ to obtain

�2ˇ.i/c.i/�.i/
C 2ˇ.i/b.i/�.i�1/

�
1

c.i/



c.i/x.i/
� b.i/x.i�1/

� a.i/x?


2

2

�
1

c.i/
kc.i/
xx.i/
� b.i/x.i�1/

� a.i/x?
k

2
2 � c.i/.".i//2

D c.i/
�
t .i/
� Nt .i/

� .".i//2
�

(2.51)

where

c.i/ , a.i/
C b.i/ (2.52a)

t .i/ , kx.i/
� z.i/

k
2
2; Nt .i/ , kxx.i/

� z.i/
k

2
2 (2.52b)

z.i/ ,
b.i/

c.i/
x.i�1/

C
a.i/

c.i/
x?: (2.52c)

We arranged (2.51) using completion of squares so that the first two summands are similar (but

with opposite signs), with the goal of facilitating cancellations as we sum over i . Since we have
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control over the sequences a.i/ and b.i/, we impose the following boundary conditions for i � 1:

c.i�1/t .i�1/
� c.i/ Nt .i/ (2.53a)

� .i/
� 0 (2.53b)

where

� .i/ , ˇ.i/c.i/
� ˇ.iC1/b.iC1/: (2.54)

Now, apply the inequality (2.53a) to the right-hand side of (2.51):

�2ˇ.i/c.i/�.i/
C 2ˇ.i/b.i/�.i�1/

� c.i/t .i/
� c.i�1/t .i�1/

� c.i/.".i//2 (2.55a)

and sum (2.55a) over i D 1; 2; : : : ; k, which leads to summand cancellations and

�2ˇ.k/c.k/�.k/
C 2ˇ.1/b.1/�.0/

� 2

k�1X
iD1

� .i/�.i/
� �c.0/t .0/

�

kX
iD1

c.i/.".i//2 (2.55b)

where (2.55b) follows by discarding a nonnegative term c.k/t .k/.

Now, due to � .i/�.i/ � 0 (see (2.34a) and (2.53b)), the inequality (2.55b) leads to

�.k/
�

2ˇ.1/b.1/�.0/ C c.0/t .0/ C
Pk

iD1 c.i/.".i//2

2ˇ.k/c.k/
(2.56)

with simple upper bound on the right-hand side, thanks to summand cancellations facilitated by

the assumptions (2.53).

As long as ˇ.k/c.k/ grows at a rate of k2 and the inexactness of the proximal mappings leads

to bounded
Pk

iD1 c.i/.".i//2, the centered objective function �.k/ can achieve the desired bound

decrease rate of 1=k2.
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In the following section, we show how to satisfy (2.53a), which will lead to the projected

momentum acceleration step (2.20d). We approach the constraints (2.53a) by first aiming to meet

them with equality, which is possible in the absence of the convex-set constraint (C D Rp). We

then use the nonexpansiveness of the convex-set projection to construct a.i/ and b.i/ that satisfy

(2.53a) with inequality in the general case where the convex-set constraint is present. Finally, we

show how to satisfy (2.53b), which will allow us to construct the recursive update of � .i/ in (2.20b)

and verify the allowed range of momentum tuning constants in (2.22).

2.A.1 Satisfying Conditions (2.53)

2.A.1.1 Imposing equality in (2.53a)

(2.53a) holds with equality for all i and any x? when we choose xx.i/
D yx

.i/ that satisfies

p
c.i�1/.x.i�1/

� z.i�1// D
p

c.i/.yx
.i/
� z.i//: (2.57)

Now, (2.57) requires equal coefficients multiplying x? on both sides; thus a.i/=
p

c.i/ D 1=w

for all i , where w > 0 is a constant (not a function of i ), which implies c.i/ D w2.a.i//2 and

b.i/ D w2.a.i//2 � a.i/; see also (2.52a). Upon defining

� .i/ , w2a.i/ (2.58a)

we have

w2c.i/
D .� .i//2

I w2b.i/
D .� .i//2

� � .i/: (2.58b)

Plug (2.58) into (2.57) and reorganize to obtain the following form of momentum acceleration:

yx
.i/
D x.i�1/

C‚.i/.x.i�1/
� x.i�2//: (2.59)
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Although xx.i/
D yx

.i/ satisfies (2.53a), it is not guaranteed to be within domL; consequently,

the proximal-mapping step for this selection may not be computable.

2.A.1.2 Selecting xx.i /
2 C that satisfies (2.53a)

We now seek xx.i/ within C that satisfies the inequality (2.53a). Since x.i�1/ and x? are in C ,

z.i/ 2 C by the convexity of C ; see (2.52c). According to Lemma 2.2, projecting (2.59) onto C

preserves or reduces the distance between points. Therefore,

xx.i/
D PC .yx

.i/
/ (2.60)

belongs to C and satisfies the condition (2.53a):

c.i�1/t .i�1/
D c.i/

kyx
.i/
� z.i/

k
2
2 (2.61a)

� c.i/
kxx.i/

� z.i/
k

2
2 D c.i/ Nt .i/ (2.61b)

where (2.61a) and (2.61b) follow from (2.57) and by using Lemma 2.2, respectively; see also

(2.52b).

Without loss of generality, setw D 1 and rewrite and modify (2.54), (2.52b), and (2.55b) using

(2.58) to obtain

� .i/
D ˇ.i/.� .i//2

� ˇ.iC1/� .iC1/.� .iC1/
� 1/; i � 1 (2.62a)

.� .i//2t .i/
D


� .i/x.i/

� .� .i/
� 1/x.i�1/

� x?


2

2
(2.62b)

k�1X
iD1

� .i/�.i/
�

1

2

h
.� .0//2t .0/

C

kX
iD1

.� .i/".i//2
i

(2.62c)

where (2.62c) is obtained by discarding the negative term �2ˇ.k/.� .k//2�.k/ and the zero term

ˇ.1/� .1/.� .1/ � 1/�.0/ (because � .1/ D 1) on the left-hand side of (2.55b). Now, (2.33a) follows

from (2.56) by using � .0/ D � .1/ D 1 (see (2.20b)), (2.58), and (2.62b) with i D 0.
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2.A.1.3 Satisfying (2.53b)

By substituting (2.62a) into (2.53b), we obtain the conditions

ˇ.i�1/.� .i�1//2
� ˇ.i/

�
.� .i//2

� � .i/
�

(2.63a)

and interpret .� .i//C1
iD1 as the sequence of gaps between the two sides of (2.63a); (2.63a) implies

� .i/
� 1=2C

q
1=4C B.i/.� .i�1//2: (2.63b)

Comparing (2.20b) with (2.63b) justifies the constraints in (2.22).

2.A.2 Connection to Convergence-Rate Analysis of FISTA in [BT09a]

If the step-size sequence .ˇ.i// is non-increasing (e.g., in the backtracking-only scenario with

n D C1), (2.20b) with B.i/ D 1 also satisfies the inequality (2.63b). In this case, (2.33a) still

holds but (2.33b) does not because (2.35) no longer holds. However, because B.i/ D 1, we have

� .k/ � .k C 1/=
 and

�.k/
� 
2kx

.0/ � x?k2
2 C E .k/

2ˇ.k/.k C 1/2
(2.64)

which generalizes [BT09a, Th. 4.4] to include the inexactness of the proximal operator and the

convex-set projection.

2.B Convergence of Iterates

To prove convergence of iterates, we need to show that the centered objective function �.k/

decreases faster than the right-hand side of (2.33b). We introduce Lemmas 2.3 and 2.4 and then

use them to prove Theorem 2.2. Throughout this Appendix, we assume that Assumption 1 of
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Theorem 2.2 holds, which justifies (2.50) and (2.63) as well as results from Appendix 2.A that we

use in the proofs.

Lemma 2.3. Under Assumptions 1–3 of Theorem 2.2,

C1X
iD1

.2� .i/
� 1/ı.i/ < C1: (2.65)

Proof: By letting k !C1 in (2.62c) and using (2.37), we obtain

C1X
iD1

� .i/�.i/ < C1: (2.66)

For i � 1, rewrite (2.62a) using � .i/ expressed in terms of � .iC1/ (based on (2.20b)):

� .i/
D

ˇ.iC1/




�
.
 � 2/� .iC1/

C .1 � b
2/=

�

�

 � 2



ˇ.iC1/� .iC1/ (2.67)

where the inequality in (2.67) is due to b
2 � 1 < 0; see Assumption 3. Apply nonexpansiveness

of the projection operator to (2.50b) and use (2.59) to obtain

2ˇ.i/.�.i�1/
��.i// � ı.i/

� .‚.i//2ı.i�1/
� .".i//2

I (2.68)

then multiply both sides of (2.68) by .� .i//2, sum over i D 1; 2; : : : ; k and reorganize:

k�1X
iD1

.2� .i/
� 1/ı.i/

� .� .0/
� 1/2ı.0/

� .� .k//2ı.k/
C E .k/

C 2ˇ.1/�.0/
� 2ˇ.k/.� .k//2�.k/

C 2

k�1X
iD1

%.i/�.i/ (2.69a)

� E .k/
C 2ˇ.1/�.0/

C
4


 � 2

k�1X
iD1

� .i/�.i/ (2.69b)
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where (see (2.62a))

%.i/ , ˇ.iC1/.� .iC1//2
� ˇ.i/.� .i//2 (2.69c)

D ˇ.iC1/� .iC1/
� � .i/; (2.69d)

and we drop the zero term .� .0/� 1/2ı.0/ and the negative term �.� .k//2ı.k/� 2ˇ.k/.� .k//2�.k/

from (2.69a) and use the fact that %.i/ � Œ2=.
 � 2/�� .i/ implied by (2.67) to obtain (2.69b).

Finally, let k !C1 and use (2.37) and (2.66) to conclude (2.65).

Lemma 2.4. For j � 3,

…j ,
C1X
kDj

kY
`Dj

‚.`/
� 
� .j �1/

� 1: (2.70)

Proof: For j � 3,

1p
ˇ.k�1/� .k�1/� .k/

�

p

ˇ.k�1/� .k�1/
�


p
ˇ.k/� .k/

(2.71a)

�

p

ˇ.k�2/� .k�2/
�


p
ˇ.k/� .k/

(2.71b)

where we obtain the inequality (2.71a) by combining the terms on the right-hand size and using

(2.35a) and (2.71b) holds because
p

ˇ.k/� .k/ is an increasing sequence (see Section 2.4). Now,

…j �

C1X
kDj

kY
`Dj

ˇ.`�2/.� .`�2//2

ˇ.`�1/� .`�1/� .`/
D

C1X
kDj

ˇ.j �2/.� .j �2//2� .j �1/

ˇ.k�1/.� .k�1//2� .k/
(2.72a)

�

ˇ.j �2/.� .j �2//2� .j �1/p

ˇ.j �2/� .j �2/
p

ˇ.j �1/� .j �1/
D 


p
B.j �1/� .j �2/ (2.72b)

where (2.72a) follows by using (2.20c), (2.63a) with i D ` � 1, and fraction-term cancellation;

(2.72b) is obtained by substituting (2.71b) into (2.72a) and canceling summation terms. (2.72b)

implies (2.70) by using (2.35a) with k D j � 1.
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Define

�.i/ , kx.i/
� x?
k

2
2; ƒ.i/ , �.i/

� �.i�1/: (2.73)

Since f .x.i// converges to f .x?/ D minx f .x/ as the iteration index i grows and x? is a mini-

mizer, it is sufficient to prove the convergence of �.i/; see [CD15, Th. 4.1].

Proof of Theorem 2.2: Use (2.50a) and �.i/ � 0 to obtain

0 � �.i/
� kxx.i/

� x?
k

2
2 � .".i//2: (2.74)

Now,

kxx.i/
� x?
k

2
2 � kyx

.i/
� x?
k

2
2 D �.i�1/

C .‚.i//2ı.i�1/

C 2‚.i/.x.i�1/
� x?/T .x.i�1/

� x.i�2// (2.75a)

� �.i�1/
C .‚.i//2ı.i�1/

C‚.i/.ƒ.i�1/
C ı.i�1// (2.75b)

where (2.75a) and (2.75b) follow by using the nonexpansiveness of the projection operator (see

also (2.59)) and the identity

2.a � b/T .a � c/ D ka � bk2
2 C ka � ck

2
2 � kb � ck

2
2 (2.76)

respectively. Combine the inequalities (2.75b) and (2.74) to get

ƒ.i/
� ‚.i/

�
ƒ.i�1/

C .‚.i/
C 1/ı.i�1/

�
C .".i//2 (2.77a)

� ‚.i/.ƒ.i�1/
C 2ı.i�1/=�/C .".i//2 (2.77b)
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where (2.77b) is due to 1 < 1=� (see (2.29)) and the following:

‚.i/ <
� .i�1/

� .i/
D

p
ˇ.i�1/� .i�1/

p
ˇ.i/p

ˇ.i/� .i/
p

ˇ.i�1/
(2.78a)

<

p
ˇ.i/p

ˇ.i�1/
�

1p
�

<
1

�
(2.78b)

where we have used (2.20c), the fact that
p

ˇ.i/� .i/ is an increasing sequence, ˇ.i/=ˇ.i�1/ � 1=�

(see Section 2.3.2), and (2.29).

According to (2.35b) and the fact that the sequence .ˇ.i// is bounded (by Assumption 4), there

exists an integer J such that

� .j �1/
� 2; ‚.j /

�
1

� .j /
> 0 (2.79)

for all j � J , where the second inequality follows from the first and the definition of ‚.j /; see

(2.20c). Then

�.i/ , max.0; ƒ.i//

� ‚.i/

�
�.i�1/

C
2ı.i�1/

�
C

.".i//2

‚.i/

�
(2.80a)

�

iX
j DJ

�
2ı.j �1/

�
C

.".j //2

‚.j /

� iY
`Dj

‚.`/
C�.J �1/

iY
`DJ

‚.`/ (2.80b)

for i � J , where the inequality in (2.80a) follows by combining the inequalities (2.77b) and

�.i�1/ � ƒ.i�1/, and (2.80b) follows by recursively applying inequality (2.80a) with i replaced

by i � 1; i � 2; : : : ; J . Now, sum the inequalities (2.80b) over i D J; J C 1; : : : ;C1 and

exchange the order of summation over i and j on the right-hand side (see also (2.70)):

C1X
iDJ

�.i/
�

C1X
j DJ

…j

�
2ı.j �1/

�
C

.".j //2

‚.j /

�
C…J �.J �1/: (2.81)
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For j � J � 3,


.2� .j �1/
� 1/ �…j � 
.� .j �1/

� 1/C 1 > 0 (2.82a)

2
.� .j �1/
� 1/ �…j � 
.� .j �1/

� 2/C 1 > 0 (2.82b)

where the first and second inequalities in (2.82) follow by applying Lemma 2.4 and (2.79), respec-

tively; consequently,

C1X
j DJ

…j ı.j �1/
� 


C1X
j DJ

.2� .j /
� 1/ı.j / < C1 (2.83a)

C1X
j DJ

…j

.".j //2

‚.j /
� 2


C1X
j DJ

.".j //2 � .j �1/ � 1

‚.j /
(2.83b)

D 2


C1X
j DJ

.".j //2� .j / (2.83c)

� 2


C1X
j DJ

.� .j /".j //2 (2.83d)

where (2.83a) follows from (2.82a) and Lemma 2.3 (for the second inequality) and (2.83b) follows

by using (2.82b); (2.83c) and (2.83d) are due to (2.20c) and (2.79), respectively. Combine (2.83a)

and (2.83d) with (2.81) to conclude that

C1X
iD1

�.i/ < C1: (2.84)

The remainder of the proof uses the technique employed by Chambolle and Dossal to conclude

the proof of [CD15, Th. 4.1, p. 978], which we repeat for completeness. Define X .i/ , �.i/ �Pi
j D1 �.j /, which is lower bounded because �.i/ and

Pi
j D1 �.j / are lower and upper bounded,

respectively; see (2.73) and (2.84). Furthermore, .X .i// is an non-increasing sequence:

X .iC1/
D �.iC1/

��.iC1/
�

iX
j D1

�.j /
� X .i/; (2.85)
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where we used the fact that �.iC1/ � ƒ.iC1/ D �.iC1/ � �.i/. Hence, .X .i// converges as

i !C1. Since
Pi

j D1 �.j / converges, .�.i// also converges.
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CHAPTER 3. UPPER-BOUNDING THE REGULARIZATION

CONSTANT FOR CONVEX SPARSE SIGNAL RECONSTRUCTION

Submitted for publication.

Renliang Gu and Aleksandar Dogandžić

Abstract

Consider reconstructing a signal x by minimizing a weighted sum of a convex differentiable

NLL (data-fidelity) term and a convex regularization term that imposes a convex-set constraint

on x and enforces its sparsity using `1-norm analysis regularization. We compute upper bounds

on the regularization tuning constant beyond which the regularization term overwhelmingly dom-

inates the NLL term so that the set of minimum points of the objective function does not change.

Necessary and sufficient conditions for irrelevance of sparse signal regularization and a condition

for the existence of finite upper bounds are established. We formulate an optimization problem

for finding these bounds when the regularization term can be globally minimized by a feasible x

and also develop an ADMM type method for their computation. Simulation examples show that

the derived and empirical bounds match.
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3.1 Introduction

Selection of the regularization tuning constant u > 0 in convex Tikhonov-type [TA77] penal-

ized NLL minimization

fu.x/ D L.x/C ur.x/ (3.1)

is a challenging problem critical for obtaining accurate estimates of the signal x [Vog02, Ch. 7].

Too little regularization leads to unstable reconstructions with large noise and artifacts due to, for

example, aliasing. With too much regularization, the reconstructions are too smooth and often de-

generate to constant signals. Finding bounds on the regularization constant u or finding conditions

for the irrelevance of signal regularization has received little attention. In this chapter, we deter-

mine upper bounds on u beyond which the regularization term r.x/ overwhelmingly dominates

the NLL term L.x/ in (3.1) so that the minima of the objective function fu.x/ do not change.

For a linear measurement model with white Gaussian noise and `1-norm regularization, a closed-

form expression for such a bound is determined in [KKL+07, eq. (4)]; see also Example 3.4. The

obtained bounds can be used to design continuation procedures [HYZ08; WNF09] that gradually

decrease u from a large starting point down to the desired value, which improves the numerical

stability and convergence speed of the resulting minimization algorithm by taking advantage of

the fact that penalized NLL schemes converge faster for smoother problems with larger u [AG03].

In some scenarios, users can monitor the reconstructions as u decreases and terminate when the

result is satisfactory.

Consider a convex NLL L.x/ and a regularization term

r.x/ D IC .x/C k‰Hxk1 (3.2)

that imposes a convex-set constraint on x, x 2 C � Rp, and sparsity of an appropriate linearly

transformed x, where ‰ 2 Cp�p0 is a known sparsifying dictionarymatrix. Assume that the NLL
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L.x/ is differentiable and lower bounded within the closed convex set C , and satisfies

domL.x/ � C (3.3)

which ensures that L.x/ is computable for all x 2 C . Define the convex sets of solutions to

minx fu.x/,minx r.x/, andminx2Q L.x/:1

Xu ,
˚
x
ˇ̌
fu.x/ D min

�
fu.�/

	
(3.4a)

Q ,
˚
x j r.x/ D min

�
r.�/

	
D
˚
x 2 C

ˇ̌
k‰Hxk1 � min

�2C
k‰H�k1

	
(3.4b)

X ˘ ,
˚
x 2 Q j L.x/ � min

�2Q
L.�/

	
¤ ; (3.4c)

where the existence of X ˘ is ensured by the assumption that L.x/ is lower bounded in C .

We review the notation: “�”, “T ”, “H ”, “C”, k�kp, j�j, ˝, “�”, “�”, IN , 1N �1, and 0N �1

denote complex conjugation, transpose, Hermitian transpose, Moore-Penrose matrix inverse, p̀-

norm over the complex vector space CN defined by kzkp
p D

PN
iD1 jzi j

p for z D .zi/ 2 CN ,

absolute value, Kronecker product, elementwise versions of “�” and “�”, the identity matrix of

size N and the N � 1 vectors of ones and zeros, respectively (replaced by I; 1, and 0 when the

dimensions can be inferred). IC .a/ D

„
0; a 2 C

C1; otherwise
, PC .a/ D argminx2Ckx�ak

2
2, and

expı a denote the indicator function, projection ontoC , and the elementwise exponential function:

Œexpı a�i D exp ai .

Denote by N .A/ and R.A/ the null space and range (column space) of a matrix A. These

vector spaces are real or complex depending on whether A is a real- or complex-valued matrix.

For a set S of complex vectors of size p, define ReS ,
˚
s 2 Rp j sC jt 2 S for some t 2 Rp

	
1The use of “�” in the definitions of Q andX ˘ in (3.4b) and (3.4c) makes it easier to identify both as convex sets.
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and S \ Rp ,
˚
s 2 Rp j sC j0 2 S

	
, where j D

p
�1. For A 2 CM�N ,

N .AH / \ RM
D N .AT /; Re

�
R.A/

�
D R.A/ (3.5)

are the real null space and range of AT and A, respectively, where

A ,
�
ReA ImA

�
2 RM�2N : (3.6)

If A in (3.6) has full row rank, we can define

A� , AH ŒRe.AAH /��1 (3.7)

which reduces toAC for real-valuedA. The following are equivalent: Re.R.‰// D Rp,N .‰H /\

Rp D f0g, and d D p, where

d , dim.Re.R.‰/// � min.p; 2p0/: (3.8)

We can decompose ‰ as

‰ D FZ (3.9)

where F 2 Rp�d and Z 2 Cd�p0 with rankF D d and rankZ D d ; Z D
�
ReZ ImZ

�
2

Rd�2p0 , consistent with the notation in (3.6). Here,R.F / denotes the real range of the real-valued

matrix F . Clearly, d � 1 is of interest; otherwise ‰ D 0. Observe that (see (3.7))

Re.‰Z�/ D F (3.10a)

R.F / D Re.R.‰//: (3.10b)
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The subdifferential of the indicator function NC .x/ D @IC .x/ is the normal cone to C at x

[Ber09, Sec. 5.4] and, by the definition of a cone, satisfies

NC .x/ D aNC .x/; for any a > 0. (3.11)

Define

G.s/ ,

„
fs=jsjg; s ¤ 0

fw 2 C j jwj � 1g; s D 0

(3.12)

and its elementwise extension G.s/ for vector arguments s, which can be interpreted as twice

the Wirtinger subdifferential of ksk1 with respect to s [BST12]. Note that sH G.s/ D fksk1g,

and, when s is a real vector, Re.G.s// is the subdifferential of ksk1 with respect to s [KR15,

Sec. 11.3.4].

Lemma 3.1. For ‰ 2 Cp�p0 and x 2 Rp, the subdifferential of k‰Hxk1 with respect to x is

@xk‰
Hxk1 D Re

�
‰G.‰Hx/

�
: (3.13)

Proof: (3.13) follows from

@xj 
H
j xj D Re

�
 j G. H

j x/
�

(3.14)

where  j is the j th column of ‰. We obtain (3.14) by replacing the linear transform matrix in

[WYYZ08, Prop. 2.1] with
�
Re j Im j

�T .
We now use Lemma 3.1 to formulate the necessary and sufficient conditions for x 2 Xu:

0 2 uRe
�
‰G.‰Hx/

�
CrL.x/CNC .x/ (3.15a)
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and x 2 Q:

0 2 Re
�
‰G.‰Hx/

�
CNC .x/ (3.15b)

respectively.

When the signal vector x D vecX corresponds to an image X 2 RJ �K , its isotropic and

anisotropic TV regularizations correspond to [CP16, Sec. 2.1]

‰ D ‰v C j‰h 2 CJK�JK (isotropic) (3.16a)

‰ D
�
‰v ‰h

�
2 RJK�2JK (anisotropic) (3.16b)

respectively, where ‰v D IK ˝DT .J / and ‰h D DT .K/˝ IJ are the vertical and horizontal

difference matrices (similar to those in [BV16, Sec. 15.3.3]), and

D.L/ ,

2666666666664

1 �1

1 �1

: : :
: : :

1 �1

0 0 � � � 0 0

3777777777775
2 RL�L (3.17)

obtained by appending an all-zero row from below to the .L � 1/ � L upper-trapezoidal matrix

with first row
�
1;�1; 0; : : : ; 0

�
; note that D.1/ D 0. Here, d D JK � 1 and

N .‰H / D R.1/ (3.18)

for both the isotropic and anisotropic TV regularizations.

The scenario where

N .‰H / \ C ¤ ; (3.19)
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holds is of practical interest: then Q D N .‰H / \ C and x˘ 2 X ˘ globally minimize the

regularization term: r.x˘/ D 0. If (3.19) holds and x˘ 2 X ˘, then G.‰Hx˘/ D H , where

H ,
˚
w 2 Cp0�1

j kwk1 � 1
	
: (3.20)

If, in addition to (3.19),

• d D p, then X ˘ D Q D f0g;

• N .‰H / \ Rp D R.1/, then Q D R.1/ \ C and x˘ 2 X ˘ are constant signals of the

form x˘ D 1x˘
0 ; x˘

0 2 R.

In Section 3.2, we define and explain an upper bound U on useful regularization constants u

and establish conditions under which signal sparsity regularization is irrelevant and finite U does

not exist. We then present an optimization problem for finding U when (3.19) holds (Section 3.3),

develop a general numerical method for computing bounds U (Section 3.4), present numerical

examples (Section 3.5), and make concluding remarks (Section 3.6).

3.2 Upper Bound Definition and Properties

Define

U , inf
˚
u � 0 jXu \Q ¤ ;

	
: (3.21)

If Xu \Q D ; for all u, then finite U does not exist, which we denote by U D C1.

We now show that, if u � U , then the set of minimum points Xu of the objective function

does not change.

Remark 3.1. (a) For any u, Xu \Q D X ˘ if and only if Xu \Q ¤ ;.

(b) Assuming XU \Q ¤ ; for some U � 0, Xu D X ˘ for u > U .
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Proof: We first prove (a). Necessity follows by the existence of X ˘; see (3.4c). We argue

sufficiency by contradiction. Consider any xu 2 Xu \ Q; i.e., xu minimizes both fu.x/ and

r.x/. If xu … X ˘, there exists a y 2 X ˘ with L.y/ < L.xu/ that, by the definition of X ˘,

also minimizes r.x/. Therefore, fu.y/ D L.y/ C ur.y/ < fu.xu/, which contradicts the

assumption xu 2 Xu. Therefore, Xu \ Q � X ˘. If there exists a z 2 X ˘ � Q such that

z … Xu, then fu.z/ > fu.xu/ which, since both z and xu are in Q, implies that L.z/ > L.xu/

and contradicts the definition of X ˘. Therefore, X ˘ � Xu.

We now prove (b). By (a), XU \Q D X ˘, which confirms (b) for u D U . Consider now

u > U , a y 2 XU \Q D X ˘, and any x 2 Xu. Then,

L.x/C Ur.x/ � L.y/C Ur.y/ (3.22a)

L.y/C ur.y/ � L.x/C ur.x/: (3.22b)

By summing the two inequalities in (3.22) and rearranging, we obtain r.y/ � r.x/. Since y 2 Q,

x is also in Q; i.e., Xu � Q, which implies Xu D X ˘ by (a).

As u increases,Xu moves gradually towardsQ and, according to the definition (3.21),Xu and

Q do not intersect when u < U . Once u D U , the intersection of the two sets is X ˘, and, by

Remark 3.1(b), Xu D X ˘ for all u > U .

3.2.1 Irrelevant Signal Sparsity Regularization

Remark 3.2. The following claims are equivalent:

(a) X ˘ \ X0 ¤ ;; i.e., there exists an x˘ 2 X ˘ such that

0 2 rL.x˘/CNC .x˘/I (3.23)

(b) X ˘ � X0; and

(c) U D 0; i.e., X0 \Q ¤ ;.
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Proof: (c) follows from (a) because X ˘ � Q. (b) follows from (c) by applying Re-

mark 3.1(a) to obtain X0 \Q D X ˘, which implies (b). Finally, (b) implies (a).

Having rL.x˘/ D 0 for at least one x˘ 2 X ˘ implies (3.23) and is therefore a stronger

condition than (3.23).

Example 3.1. Consider L.x/ D kxk2
2 and C D

˚
x 2 R2 j kx � 12�1k2 � 1

	
. (Here, L.x/

could correspond to the Gaussian measurement model with measurements equal to zero.) Since

C is a circle within R2
C, the objective functions for the identity (‰ D I2) and 1D TV sparsifying

transforms are

fu.x/ D x2
1 C x2

2 C u.x1 C x2/C IC .x/; (identity) (3.24a)

fu.x/ D x2
1 C x2

2 C ujx1 � x2j C IC .x/; (1D TV) (3.24b)

respectively, where Xu D X ˘ D Q D fx˘g and x˘ D
�
1 �
p

2=2
�
1. Here, rL.x˘/ D

.2 �
p

2/12�1 and NC .x˘/ D fa1 j a � 0g, which confirms that (3.23) holds.

3.2.2 Condition for Infinite U and Guarantees for Finite U

Remark 3.3. If there exists x˘ 2 X ˘ such that

ŒrL.x˘/CNC .x˘/� \ Re.R.‰// D ;: (3.25)

then U D C1. When (3.19) holds, the reverse is also true with a stronger claim: U D C1

implies (3.25) for all x˘ 2 X ˘.

Proof: First, we prove sufficiency by contradiction. If a finite U exists, then X ˘ � Xu

for all u � U . Therefore, (3.15a) holds with x being any x˘ 2 X ˘, which contradicts (3.25).
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In the case where (3.19) holds, we prove the necessity by contradiction. If (3.25) does not hold

for all x˘ 2 X ˘, there exist t 2 NC .x˘/ and w 2 Cp0 such that

0 D rL.x˘/C Re.‰w/C t: (3.26)

Since (3.19) holds, ‰Hx˘ D 0 and G.‰Hx˘/ D H ; see (3.20). When u � kwk1, w 2 uH

and Re.‰w/ 2 uRe
�
‰G.‰Hx˘/

�
. Therefore, (3.15a) holds at x D x˘ for all u � kwk1,

which contradicts U D C1.

Example 3.2. Consider L.x/ D x1C IRC
.x1/, ‰ D I2, and C D

˚
x 2 R2 j kx� 12�1k2 � 1

	
.

(Here, L.x/ could correspond to the Poisson.x1/ measurement model with measurement equal to

zero.) Since C is a circle within R2
C, the objective function is

fu.x/ D .1C u/x1 C ux2 C IC .x/ (3.27)

with Xu D fxug, X ˘ D Q D fx˘g, and

xu D 12�1 �
1p

2C 2=uC 1=u2

2641C 1=u

1

375 (3.28a)

x˘
D
�
1 �
p

2=2
�
12�1 (3.28b)

which implies U D C1, consistent with the observation that Xu \Q D ;. Here, (3.19) is not

satisfied: (3.25) is only a sufficient condition for U D C1 and does not hold in this example.

Example 3.3. Consider L.x/ D kxk2
2, 1D TV sparsifying transform with ‰ D DT .2/, and

C D
˚
x 2 R2 j



x � �2; 0
�T 

2

2
� 2

	
. Since C is a circle with x1 � x2 � 0, the objective

function is

fu.x/ D kxk2
2 C ujx1 � x2j C IC .x/ (3.29a)

D kx � 1
2
Œu �u�T k2

2 � u2=2C IC .x/ (3.29b)
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with Xu D
˚�

2 � .1C 4=u/=q.u/; 1=q.u/
�T 	, q.u/ ,

p
1C 4=uC 8=u2, and X ˘ D Q D

f12�1g, which implies U D C1. Since (3.19) holds in this example, (3.25) is necessary and

sufficient for U D C1. Since �1T
rL.x˘/ D �4 and NC .x˘/ D f.�a; a/T j a � 0g, (3.25)

holds.

3.2.2.1 Two cases of finite U

If d D p and (3.19) holds, then U must be finite: in this case, condition (3.25) in Remark 3.3

cannot hold, which is easy to confirm by substituting Re.R.‰// D Rp into (3.25).

U must also be finite if

X ˘
\ intC ¤ ;: (3.30)

Indeed, (3.30) implies (3.19) and that for x˘ 2 X ˘ \ intC ,

NC .x˘/ D f0g (3.31a)

rL.x˘/ 2 Re.R.‰// (3.31b)

and hence (3.25) cannot hold upon substituting (3.31a) and (3.31b). Here, (3.31b) follows from

0 2 rL.x˘/CNQ.x˘/, the condition for optimality of the optimization problemminx2Q L.x/

that defines X ˘, by using the fact that NQ.x˘/ D Re.R.‰// when x˘ 2 X ˘ \ intC .

If (3.30) holds then, by Remark 3.2, U D 0 if and only if rL.x˘/ D 0.

3.3 Bounds When (3.19) Holds

We now present an optimization problem for finding U when (3.19) holds.
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Theorem 3.1. Assume that (3.19) holds and that the convex NLL L.x/ is differentiable within

X ˘. Consider the following optimization problem:

(P0): U0.x˘/ D min
a2Rp; t2Cp0

kp.x˘; a; t/k1 (3.32a)

subject to a 2 NC .x˘/ (3.32b)

rL.x˘/C a 2 R.F / (3.32c)

with

p.x; a; t/ , t CZ�
˚
F CŒrL.x/C a� � Re.Zt/

	
: (3.33)

Then, U0.x˘/ D U for all x˘ 2 X ˘ and U in (3.21).

Here, U D C1 if and only if the constraints in (3.32b) and (3.32c) cannot be satisfied for any

a, which is equivalent to x˘ 2 X ˘ satisfying (3.25) in Remark 3.3.

Proof: Observe that G.‰Hx˘/ D H for all x˘ 2 X ˘ and

Re
�
‰p.x; a; t/

�
D rL.x/C a: (3.34)

due to (3.19) and (3.10a), respectively.

We first prove that X ˘ � Xu if u � U0.x˘/. Consider any x˘ 2 X ˘ and denote by . Qa; Qt/ a

pair .a; t/ that solves the minimization problem (P0). Since u � U0.x˘/, there exists an Qh 2 H

such that p.x˘; Qa; Qt/C u Qh D 0. Using (3.34), we obtain

0 D Ref‰Œp.x˘; Qa; Qt/C u Qh�g D uRe.‰ Qh/CrL.x˘/C Qa (3.35)

which implies x˘ 2 Xu according to (3.15a).

Second, we prove that if u < U0.x˘/ for any x˘ 2 X ˘, then X ˘ \ Xu D ;. We employ

proof by contradiction. Suppose X ˘ \ Xu ¤ ;; then, there exists an x˘ 2 X ˘ \ Xu. According
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to (3.15a), there exist an Lh 2 H and an La 2 NC .x˘/ such that 0 D uRe.‰ Lh/C rL.x˘/C La.

Using (3.34), we have

0 D Re
�
‰Œu LhC p.x˘; La;�u Lh/�

�
: (3.36)

Note that

u LhC p.x˘; La;�u Lh/ D Z�
˚
F CŒrL.x˘/C La�C uRe.Z Lh/

	
: (3.37)

Inserting (3.37) into (3.36) and using (3.10a) and the fact that F has full column rank leads to

0 D F CŒrL.x˘/C La�C uRe.Z Lh/; thus

0 D u LhC p.x˘; La;�u Lh/: (3.38)

Now, rearrange and use the fact that k Lhk1 � 1 (see (3.20)) to obtain

kp.x˘; La;�u Lh/k1 D uk� Lhk1 � u < U0.x˘/ (3.39)

which contradicts (3.32), where U0.x˘/ is the minimum.

Finally, we prove by contradiction that U0.x˘/ is invariant within X ˘ if X ˘ has more than

one element. Assume that there exist x˘
1 ;x˘

2 2 X ˘ and u such that U0.x˘
1/ � u < U0.x˘

2/. We

obtain contradictory results: x˘
1 2 Xu and X ˘ \ Xu ¤ ; because u � U0.x˘

1/ and u < U0.x˘
2/,

respectively. Therefore, U D U0.x˘/ is invarant to x˘ 2 X ˘.

The constraints on a in (3.32b) and (3.32c) are equivalent to stating that (3.25) does not hold

for any x˘ 2 X ˘; see also (3.10b). If an a does not exist that satisfies these constraints, (3.25)

holds and U D C1 according to Remark 3.3.

We make a few observations: (P0) is a linear programming problem with linear constraints and

can be solved using CVX [GB14] and Matlab’s optimization toolbox upon identifying NC .x˘/



www.manaraa.com

64

andR.F / in (3.32b) and (3.32c), respectively. Theorem 3.1 requires differentiability of the NLL

only at x D x˘ 2 X ˘. If ‰ is real, then Z is real as well, the optimal t in (P0) has zero imag-

inary component and the corresponding simplified version of Theorem 3.1 follows and requires

optimization in (P0) with respect to real-valued t 2 Rp0 .

If ‰ is real and d D p0, then we can select Z D I , which leads to Z� D I and cancellation

of the variable t in (3.32a) and simplification of (P0).

We now specialize Theorem 3.1 to two cases with finite U .

Corollary 3.1 (d D p). If d D p and if (3.19) holds, then U in (3.21) can be computed as

U D min
a2NC .0/; t2Cp0



t C‰�ŒrL.0/C a � Re.‰t/�




1
: (3.40)

Proof: Theorem 3.1 applies, X ˘ D f0g, and U must be finite. Setting F D I in (3.32)

leads to (3.40).

If C D Rp
C, then NC .0/ D Rp

� and the condition a 2 NC .0/ reduces to a � 0.

Corollary 3.2 (X ˘ \ intC ¤ ;). If (3.30) holds, then U in (3.21) can be computed as

U D min
t2Cd



t CZ�ŒF C
rL.x˘/ � Re.Zt/�




1

(3.41)

with any x˘ 2 X ˘ \ intC .

Proof: Thanks to (3.30), (3.19) and (3.31a)–(3.31b) are satisfied, Theorem 3.1 applies, U

must be finite, and a D 0 (by (3.31a)). By using these facts, we simplify (3.32) to obtain (3.41).

If d D p and 0 2 intC , then both Corollaries 3.1 and 3.2 apply and the upper bound U can

be obtained by setting a D 0 and NC .0/ D f0g in (3.40) or by setting x˘ D 0 and F D I in

(3.41).

Example 3.4. Consider a real invertible ‰ 2 Rp�p.
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(a) If C D Rp
C, Corollary 3.1 applies and (3.40) becomes

U D min
a�0
k‰�1ŒrL.0/C a�k1: (3.42a)

In this case, U D 0 and signal sparsity regularization is irrelevant if rL.0/ � 0, which

follows by inspection from (3.42a), as well as from (3.23) in Remark 3.2. If ‰ D I , (3.42a)

further reduces to U D �min
�
0;mini ŒrL.0/�i

�
.

(b) If 0 2 intC , Corollaries 3.1 and 3.2 apply and the bound U simplifies to

U D k‰�1
rL.0/k1: (3.42b)

For ‰ D I and a linear measurement model with white Gaussian noise, (3.42b) reduces to

the expressions in [KKL+07, eq. (4)] and [WNF09, Sec. III], used in [WNF09] to design its

continuation scheme; [KKL+07] and [WNF09] also assume C D Rp.

Example 3.5 (One-dimensional TV regularization). Consider 1D TV regularization with ‰ D

DT .p/ 2 Rp�p obtained by setting K D 1; J D p in (3.16a); note that d D p � 1. Consider a

constant signal x˘ D 1x˘
0 2 X ˘. Then Theorem 3.1 applies and yields

U D min
a2NC .1x˘

0 /
max

1�j <p

ˇ̌̌̌ jX
iD1

�
rL.1x˘

0 /C a
�

i

ˇ̌̌̌
(3.43a)

wherewe have used the factorization (3.9) withF obtained by the block partitioning‰ D
�
F 0p�1

�
,

Z D
�
Ip�1 0.p�1/�1

�
, and the fact that F C is equal to the .p � 1/ � p lower-triangular matrix

of ones. When (3.30) holds, 1x˘
0 2 X ˘ \ intC , Corollary 3.2 applies, a D 0 (see (3.31a)), and

(3.43a) reduces to:

U D max
1�j <p

ˇ̌̌̌ jX
iD1

�
rL.1x˘

0 /
�

i

ˇ̌̌̌
: (3.43b)
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The bounds obtained by solving (P0) are often simple but restricted to the scenario where (3.19)

holds. In the following section, we remove assumption (3.19) and develop a general numerical

method for finding U in (3.21).

3.4 ADMM Algorithm for Computing U

We focus on the nontrivial scenario where (3.23) does not hold and assume u > 0. We also

assume that an x˘ 2 X ˘ is available, which will be sufficient to obtain the U in (3.21). We use

the duality of norms [BV04, App. A.1.6]:

k‰Hxk1 D max
kwk1�1

Re.wH ‰Hx/ (3.44)

to rewrite the minimization of (3.1) as the following min-max problem (see also (3.20)):

min
x

max
w

L.x/C uRe.wH ‰Hx/C IC .x/ � IH .w/: (3.45)

Since the objective function in (3.45) is convex with respect to x and concave with respect to w,

the optimal .x;w/ D .xu;wu/ is at the saddle point of (3.45) and satisfies

0 2 rL.xu/C uRe.‰wu/CNC .xu/ (3.46a)

wu 2 G.‰Hxu/: (3.46b)

Now, select U as the smallest u for which (3.46a)–(3.46b) hold with xu D x
˘:

U D
1

v˘
krL.x˘/k2 (3.47)



www.manaraa.com

67

where .v˘;w˘; t˘/ is the solution to the following constrained linear programming problem:

(P1): minimize
v;w;t

�v C IG.‰H x˘/.w/C INC .x˘/.t/ (3.48a)

subject to vg C Re.‰w/C t D 0 (3.48b)

obtained from (3.46a)–(3.46b) with xu and wu replaced by x˘ and w. Here,

g , rL.x˘/
ı
krL.x˘/k2 (3.49)

is the normalized gradient (for numerical stability) of the NLL at x˘; rL.x˘/ ¤ 0 because (3.23)

does not hold. Due to (3.15b), v D 0 is a feasible point that satisfies the constraints (3.48b), which

implies that v˘ � 0. When (3.25) holds, v has to be zero, implying U D C1.

To solve (P1) and find v˘, we apply an iterative algorithm based on ADMM [BPC+11; HL13]

w.iC1/
D arg min

w2G.‰H x˘/
kv.i/g C Re.‰w/C t.i/

C z.i/
k

2
2 (3.50a)

v.iC1/
D � � gT

�
Re.‰w.iC1//C t.i/

C z.i/
�

(3.50b)

t.iC1/
D PNC .x˘/

�
�v.iC1/g � Re.‰w.iC1// � z.i/

�
(3.50c)

z.iC1/
D z.i/

C Re.‰w.iC1//C v.iC1/g C t.iC1/ (3.50d)

where � > 0 is a tuning parameter for the ADMM iteration and we solve (3.50a) using the Broyden-

Fletcher-Goldfarb-Shanno optimization algorithm with box constraints [BLNZ95] and PNPG al-

gorithm [GD16b] for real and complex ‰, respectively. We initialize the iteration (3.50) with

v.0/ D 1, t.0/ D 0, z.0/ D 0, and � D 1, where � is adaptively adjusted thereafter using the

scheme in [BPC+11, Sec. 3.4.1].

In special cases, (3.50) simplifies. If (3.19) holds, then ‰Hx˘ D 0 and the constraint in

(3.50a) simplifies to kwk1 � 1; see (3.20). If Re.‰‰H / D cI; c > 0, and ‰ 2 Rp�p or
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Table 3.1: Theoretical and empirical bounds U for the linear Gaussian model.

C D Rp
C, DWT C D Rp , DWT C D Rp

C, TV C D Rp , TV
SNR/dB theoretical empirical theoretical empirical theoretical empirical theoretical empirical

30 8.87 8.87 9.43 9.43 101.55 101.54

same as
C D Rp

C, TV

20 8.91 8.91 9.47 9.47 100.21 100.21
10 9.03 9.03 9.59 9.59 96.47 96.47
0 9.43 9.43 9.98 9.98 87.49 87.49

−10 11.88 11.89 14.03 14.02 152.07 152.07
−20 27.77 27.78 43.28 43.28 361.56 361.56
−30 88.78 88.82 139.67 139.66 1024.04 1024.04
−30 77.29 77.31 123.91 123.90 683.43 683.43 909.50 909.48

Table 3.2: Theoretical and empirical bounds U for the PET example.

DWT Anisotropic TV Isotropic TV
1T ˆxtrue theoretical empirical theoretical empirical theoretical empirical

101 9.660 � 10−1 9.662 � 10−1 7.550 � 10−2 7.544 � 10−2 7.971 � 10−2 7.937 � 10−2
103 1.155 � 102 1.156 � 102 4.154 � 100 4.153 � 100 4.888 � 100 4.877 � 100
105 1.153 � 104 1.153 � 104 3.951 � 102 3.950 � 102 4.666 � 102 4.656 � 102
107 1.145 � 106 1.145 � 106 3.947 � 104 3.946 � 104 4.661 � 104 4.651 � 104
109 1.153 � 108 1.154 � 108 3.950 � 106 3.949 � 106 4.665 � 106 4.654 � 106

‰ 2 Cp�p=2, (3.50a) has the following analytical solution:

w.iC1/
D PG.‰H x˘/

�
�

1

c
‰H

�
v.i/g C t.i/

C z.i/
��

: (3.51)

When (3.30) holds, (3.50c) reduces to t.i/ D 0 for all i , thanks to (3.31a).

When ‰ is real, the constraints imposed by IG.‰H x˘/.w/ become linear and (P1) becomes a

linear programming problem with linear constraints.

3.5 Numerical Examples

Matlab implementations of the presented examples are available at https://github.com/

isucsp/pnpg/tree/master/uBoundEx. In all numerical examples, the empirical upper bounds

U were obtained by a grid search over u with Xu D fxug obtained using the PNPG method

[GD16b].

https://github.com/isucsp/pnpg/tree/master/uBoundEx
https://github.com/isucsp/pnpg/tree/master/uBoundEx
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3.5.1 Signal reconstruction for Gaussian linear model

We adopt the linear measurement model with white Gaussian noise and scaled NLL L.x/ D

0:5ky � ˆxk2
2, where the elements of the sensing matrix ˆ 2 RN �p are i.i.d. and drawn

from the uniform distribution on a unit sphere. We reconstruct the nonnegative “skyline” sig-

nal xtrue 2 R1024�1 in Section 2.5.2 from noisy linear measurements y using the DWT and 1D

TV regularizations, where the DWT matrix ‰ is orthogonal (‰‰T D ‰T ‰ D I ), constructed

using the Daubechies-4 wavelet with three decomposition levels. Define the SNR as

SNR .dB/ D 10 log10

kˆxtruek
2
2

N�2
(3.52)

where �2 is the variance of the Gaussian noise added to ˆxtrue to create the noisy measurement

vector y .

For C D Rp
C and C D Rp with DWT regularization, X ˘ D f0g and Example 3.4 applies and

yields the upper bounds (3.42a) and (3.42b), respectively.

For TV regularization, we apply the result in Example 3.5. For C D Rp and C D Rp
C, we

have X ˘ D f1x0g and X ˘ D f1max.x0; 0/g, respectively, where

x0 , argmin
x2R

L.1x/ D 1T ˆTy=kˆ1k2
2: (3.53)

If 1x0 2 intC , which holds when C D Rp or when C D Rp
C and x0 > 0, then the bound U is

given by (3.43b). For C D Rp
C and if x0 � 0, then X ˘ D f0g and (3.43a) applies. In this case,

U D 0 if ŒrL.0/�i � 0 for i D 1; : : : ; p � 1, which occurs only when ŒrL.0/�i D 0 for all i .

Table 3.1 shows the theoretical and empirical bounds for DWT and TV regularizations and

C D Rp
C and C D Rp; we decrease the SNR from 30 dB to −30 dB with independent noise

realizations for different SNRs. The theoretical bounds in Sections 3.3 and 3.4 coincide. For DWT

regularization, X ˘ is the same for both convex sets C and thus the upper bound U for C D Rp
C

is always smaller than its counterpart for C D Rp, thanks to being optimized over variable a in
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(3.42a). For TV regularization, when x0 > 0, the upper bounds U coincide for both C because,

in this case, X ˘ is the same for both C and X ˘ 2 intC . In the last row of Table 3.1 we show

the case where x0 � 0; then, X ˘ differs for the two convex sets C , and the upper bound U for

C D Rp
C is smaller than its counterpart for C D Rp, thanks to being optimized over variable a

in (3.43a): compare (3.43a) with (3.43b).

3.5.2 PET image reconstruction from Poisson measurements

Consider PET reconstruction of the 128�128 concentrationmapxtrue in Figure 2.2a, which rep-

resents simulated radiotracer activity in a human chest, from independent noisy Poisson-distributed

measurements y D .yn/ with means ŒˆxtrueC b�n. The choices of parameters in the PET system

setup and concentrationmapxtrue have been taken from the IRT [Fes16, emission/em_test_setup.m].

Here,

L.x/ D 1T .ˆx C b � y/C
X

n;yn¤0

yn ln
yn

Œˆx C b�n
(3.54a)

and

ˆ D w diag
�
expı.�S�C c/

�
S 2 RN �p

C (3.54b)

is the known sensing matrix; � is the density map needed to model the attenuation of the gamma

rays [OF97]; b D .bi/ is the known intercept term accounting for background radiation, scattering

effect, and accidental coincidence;2 c is a known vector that models the detector efficiency varia-

tion; and w > 0 is a known scaling constant, which we use to control the expected total number

of detected photons due to electron-positron annihilation, 1T E.y �b/ D 1T ˆxtrue, an SNR mea-

sure. We collect the photons from 90 equally spaced directions over 180°, with 128 radial samples
2The elements of the intercept term have been set to a constant equal to 10% of the sample mean of ˆxtrue:

b D Œ1T ˆxtrue=.10N /�1.
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at each direction. Here, we adopt the parallel strip-integral matrix S [Fes09, Ch. 25.2] and use its

implementation in the IRT [Fes16].

We now consider the nonnegative convex setC D Rp
C, which ensures that (3.3) holds, and 2D

isotropic and anisotropic TV andDWT regularizations, where the 2DDWTmatrix‰ is constructed

using the Daubechies-6 wavelet with six decomposition levels.

For TV regularizations, X ˘ D f1max.0; x0/g, where x0 D argminx2R L.1x/, computed

using the bisection method that finds the zero of @L.1x/=@x, which is an increasing function of

x 2 RC. Here, no search for x0 is needed when @L.1x/=@xjxD0 > 0, because in this case x0 < 0.

We computed the theoretical bounds using the ADMM-type algorithm in Section 3.4.

Table 3.2 shows the theoretical and empirical bounds for DWT and TV regularizations and the

SNR 1T ˆxtrue varying from 101 to 109, with independent measurement realizations for different

SNRs.

Denote the isotropic and anisotropic 2D TV bounds by Uiso and Uani, respectively. Then, it is

easy to show that when (3.19) holds,Uani � Uiso �
p

2Uani, which follows by using the inequalities
p

2
p

a2 C b2 � jaj C jbj �
p

a2 C b2 and is confirmed in Table 3.2.

3.6 Concluding Remarks

We derived upper bounds on the regularization constant for convex sparse signal reconstruc-

tion and presented for the first time such bounds for total-variation regularization. The developed

bounds can be used to construct accurate prior distributions for the regularization constant and to

design continuation procedures. Future work will include obtaining simple expressions for upper

bounds U for isotropic 2D TV regularization, based on Theorem 3.1. It would be also of interest

to compute corresponding bounds for low-rank matrix models with nuclear-norm regularization.
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CHAPTER 4. BLIND X-RAY CT IMAGE RECONSTRUCTION FROM

POLYCHROMATIC POISSON MEASUREMENTS

A paper published in IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 150–165, 2016.

Renliang Gu and Aleksandar Dogandžić

Abstract

We develop a framework for reconstructing images that are sparse in an appropriate transform

domain from polychromatic CT measurements under the blind scenario where the material of the

inspected object and incident-energy spectrum are unknown. Assuming that the object that we

wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model

parameterization by changing the integral variable from photon energy to mass attenuation, which

allows us to combine the variations brought by the unknown incident spectrum and mass attenua-

tion into a single unknown mass-attenuation spectrum function; the resulting measurement equa-

tion has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis

functions using B-splines of order one. We consider a Poisson noise model and establish con-

ditions for biconvexity of the corresponding NLL function with respect to the density-map and

mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for con-

strained minimization of a penalized NLL objective function, where penalty terms ensure non-

negativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity

of the density-map image, imposed using a convex TV norm; the resulting objective function is

biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a
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limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration

for updating the image and mass-attenuation spectrum parameters, respectively. We prove the

Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local

convergence of block-coordinate descent schemes in biconvex optimization problems. Our frame-

work applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and `1 norm

of 2D DWT image coefficients. Numerical experiments with simulated and real X-ray CT data

demonstrate the performance of the proposed scheme.

4.1 Introduction

X-ray CTmeasurement systems are important in modern nondestructive evaluation (NDE) and

medical diagnostics. The past decades have seen great progress in CT hardware and (reconstruc-

tion) software development. CT sees into the interior of the inspected object and gives 2D and

3D reconstruction at a high resolution. It is a fast, high-resolution method that can distinguish

density differences as small as 1%. As it shows the finest interior detail, it has been one of the

most important techniques in medical diagnosis, material analysis and characterization, and NDE

[DTK12; WYD08].

Because of the importance of the technique in these application areas, improving reconstruction

accuracy and speed of data collection in these systems could have a significant impact on these

broad areas. Thanks to recent computational and theoretical advances, such as graphics processing

units (GPUs) and sparse signal reconstruction theory and methods, it is now possible to design

iterative reconstruction methods that incorporate accurate nonlinear physical models into sparse

signal reconstructions from significantly undersampled measurements.

Due to the polychromatic nature of the X-ray source and the fact that mass attenuation gen-

erally decreases as a function of photon energy, the center of the spectrum shifts to higher en-

ergy as X-rays traverse the object, an effect known as “hardening” [KS88]. This effect destroys

the linearity between the attenuation coefficient and the logarithm of the noiseless measurements.
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Therefore, linear reconstructions such as FBP exhibit beam-hardening artifacts, e.g., cupping and

streaking [Hsi09, Ch. 7.6], which limit the quantitative analysis of the reconstruction. In medical

CT applications, severe artifacts can look similar to certain pathologies and further mislead the

diagnosis [Hsi09, Sec. 7.6.2]. Fulfilling the promise of compressed sensing and sparse signal re-

construction in X-ray CT depends on accounting for the polychromatic measurements, in addition

to other effects such as ring artifacts, metal artifacts in medical applications, X-ray scatter, and de-

tector crosstalk and afterglow [NDF+13; BK04]. It is not clear how aliasing and beam-hardening

artifacts interact, and our experience is that we cannot achieve great undersampling when apply-

ing sparse linear reconstruction to polychromatic measurements. Indeed, the error caused by the

model mismatch may well be larger than the aliasing error that we wish to correct using sparse

signal reconstruction.

Beam-hardening correction methods can be categorized into pre-filtering, linearization, dual-

energy, and post-reconstruction approaches [KKF08]. Reconstruction methods have recently been

developed in [EF02; EF03; VVD+11] that aim to optimize nonlinear objective functions based on

the underlying physical model; [EF02; EF03] assume known incident polychromatic source spec-

trum and imagedmaterials, whereas [VVD+11] considers a blind scenario for a lognormalmeasure-

ment model with unknown incident spectrum and imaged materials, but employs a photon-energy

discretization [GD13, eq. (2)], [Hsi09, Sec. 8.4] with an excessive number of parameters (which

leads to permutation and scaling ambiguities; see [GD13] for details) and suffers from numeri-

cal instability [GD15b]. The methods in [VVD+11] do not impose sparsity of the reconstructed

density-map image, only its nonnegativity, and they have been tested in [VVD+11] using real and

noiseless simulated data.

It is often expensive to determine the X-ray spectrum and the materials of the object. X-ray

spectrummeasurements based on semiconductor detectors are usually distorted by charge trapping,

escape events, and other effects [RPP+09], and the corresponding correction requires a highly col-

limated beam and special procedures [LRG+14]. Even after measuring the spectrum, it is not

feasible to scan different objects with fixed scanning configurations, e.g., X-ray tube voltage, cur-
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Figure 4.1: (a) Mass-attenuation spectrum ι.�/ obtained by combining the mass attenuation �."/

and incident spectrum �."/ and (b) its B1-spline expansion, with �-axis in log scale.

rent, prefiltrations, and scanning time. Knowing the mass-attenuation function can be challenging

as well when the inspected material is unknown or the inspected object is made of a compound or

a mixture with an unknown percentage of each constituent.

In this chapter (see also [GD13; GD15a; GD15b]), we adopt the nonlinear measurement sce-

nario resulting from the polychromatic X-ray source and formulate a parsimonious measurement-

model parameterization by exploiting the relationship between the mass-attenuation coefficients,

X-ray photon energy, and incident spectrum; see Fig. 4.1a. This simplified model allows blind

density-map reconstruction and estimation of the composite mass-attenuation spectrum ι.�/ in

the case for which both the mass attenuation and incident spectrum are unknown. We develop a

blind sparse density-map reconstruction scheme from measurements corrupted by Poisson noise,

where the signal sparsity in the density-map domain is enforced using a TV norm penalty. The

Poisson noise model is appropriate for measurements from photon-counting detectors and a good

approximation for the more precise compound Poisson distribution for measurements from energy-

integrating detectors [XT14; LWW07].

Althoughwe focus on Poisson noise and gradient-map image sparsity in this chapter, our frame-

work is general and easy to adapt to, for example, lognormal noise and image sparsity in a 2DDWT

domain; see [GD15b; GD15a].
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We introduce the notation: IN , 1N �1, and 0N �1 are the identity matrix of sizeN and theN �1

vectors of ones and zeros, respectively (replaced by I; 1, and 0when the dimensions can be inferred

easily); j�j, k�kp, and “T ” are the absolute value, p̀ norm, and transpose, respectively. Denote by

dxe the smallest integer larger than or equal to x 2 R. For a vector ˛ D Œ˛1; : : : ; p̨�T 2 Rp,

define the nonnegativity indicator function

IŒ0;C1/.˛/ ,

„
0; ˛ � 0

C1; otherwise
(4.1)

where “�” and “�”are the elementwise versions of “�” and “>”, respectively. Furthermore,

aL.s/ ,
R
a.�/e�s� d� is the Laplace transform of a vector function a.�/ and

�
.��/ma

�L
.s/ D

Z
.��/ma.�/e�s� d� D

dmaL.s/

dsm
(4.2)

is the mth derivative of aL.s/. Define also the set of nonnegative real numbers asRC D Œ0;C1/,

the elementwise logarithm lnı x D Œln x1; : : : ; ln xN �T where x D Œx1; x2; : : : ; xN �T , and

Laplace transforms aLı.s/ D
�
aL.sn/

�N
nD1

and .�a/Lı.s/ D
�
.�a/L.sn/

�N
nD1

obtained by stack-

ing aL.sn/ and .�a/L.sn/ columnwise, where s D Œs1; s2; : : : ; sN �T . We define the proximal

operator for function r.˛/ scaled by � [PB13]:

prox�r a D argmin
˛

1
2
k˛ � ak2

2 C �r.˛/: (4.3)

Finally, supp.�.�// is the support set of a function �.�/, dom.f / D fx 2 Rn j f .x/ < C1g is

the domain of function f .�/, and diag.x/ is the diagonal matrix with diagonal elements defined

by the corresponding elements of vector x.

4.1.1 Polychromatic X-ray CT Model

We review the standard noiseless polychromatic X-ray CT measurement model.
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Assume that the incident intensity I in of a polychromatic X-ray source spreads along photon

energy " following the density �."/ � 0:

I in
D

Z
�."/ d"I (4.4a)

see Fig. 4.1a, which shows a typical �."/. The noiseless measurement collected by an energy-

integrating detector upon traversing a straight line ` D `.x; y/ in a Cartesian coordinate system

has the superposition-integral form [KS88, Ch. 4.1], [NDF+13, Sec. 6]:

Iout
D

Z
�."/ exp

h
�

Z
`

�.x; y; "/ d`
i
d"

D

Z
�."/ exp

h
��."/

Z
`

˛.x; y/ d`
i
d"; (4.4b)

where we model the attenuation coefficients �.x; y; "/ of the inspected object consisting of a

single material using the following separable form [NDF+13, Sec. 6]:

�.x; y; "/ D �."/˛.x; y/: (4.5)

Here, �."/ > 0 is the mass-attenuation coefficient of the material, a function of the photon energy

" (illustrated in Fig. 4.1a), and ˛.x; y/ � 0 is the density-map of the object. For a monochromatic

source at photon energy ", lnŒI in."/=Iout."/� is a linear function of ˛.x; y/, which is a basis for

traditional linear reconstruction. However, X-rays generated by vacuum tubes are not monochro-

matic [KS88; Hsi09], and we cannot transform the underlying noiseless measurements to a linear

model unless we know perfectly the incident energy spectrum �."/ and mass attenuation of the

inspected material �."/.

In Section 4.2, we introduce our parsimonious parameterization of the measurement model

(4.4b) tailored for signal reconstruction. In Section 4.3, we define the parameters to be estimated

and discuss their identifiability. Section 4.4 presents the measurement model and establishes bi-

convexity of the underlying NLL function with respect to the density-map and mass-attenuation
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parameters. Section 4.5 introduces the penalized NLL function that incorporates the parameter

constraints, establishes its properties, and describes a block coordinate-descent algorithm for its

minimization. In Section 4.6, we show the performance of the proposed method using simulated

and real X-ray CT data. Concluding remarks are given in Section 4.7.

4.2 Mass-Attenuation Parameterization

Since the mass attenuation �."/ and incident spectrum density �."/ are both functions of " (see

Fig. 4.1a), we combine the variations of these two functions and write (4.4a) and (4.4b) as integrals

of � rather than ", seeking to represent our model using two functions ι.�/ (defined below) and

˛.x; y/ instead of three (�."/; �."/, and ˛.x; y/); see also [GD13]. Hence, we rewrite (4.4a) and

(4.4b) as (see Appendix 4.A)

I in
D ιL.0/ (4.6a)

Iout
D ιL

�Z
`

˛.x; y/ d`

�
; (4.6b)

where ιL.s/ D
R
ι.�/e�s� d� is the Laplace transform of the mass-attenuation spectrum ι.�/,

which represents the density of the incident X-ray energy at attenuation �; here, s > 0, in contrast

with the traditional Laplace transform where s is generally complex. For invertible �."/ with

differentiable inverse function ".�/,

ι.�/ , �.".�//j"0.�/j � 0 (4.7)

with "0.�/ D d".�/= d�. In Fig. 4.1a, the area �."j /�"j depicting the X-ray energy within the�"j

slot is the same as area ι.�j /��j , the amount of X-ray energy attenuated within the corresponding

��j slot. In Appendix 4.A, we generalize (4.7) to non-invertible �."/ with K-edges.

The mass-attenuation spectrum ι.�/ is nonnegative for all �; see (4.7) and its generalization

(4.39) in Appendix 4.A. Due to its nonnegative support and range, ιL.s/ is a decreasing function
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of s. Here, s > 0, in contrast with the traditional Laplace transform where s is generally com-

plex. The function .ιL/�1 maps the noiseless measurement Iout in (4.6), which is a nonlinear

function of the density-map ˛.x; y/, into a noiseless linear “measurement”
R

`
˛.x; y/ d`. The

.ιL/�1 ı exp.��/ mapping corresponds to the linearization function in [Her79] (where it was

defined through (4.4b) rather than the mass-attenuation spectrum) and converts �ln Iout into a

noiseless linear “measurement”
R

`
˛.x; y/ d`.

The mass-attenuation spectrum depends on the measurement system (through the incident en-

ergy spectrum) and inspected object (through the mass attenuation of the inspected material). In

the blind scenario with unknown inspected material and incident signal spectrum, parameteriza-

tion (4.6) allows us to estimate two functions: ι.�/ and ˛.x; y/ rather than three: �."/; �."/, and

˛.x; y/. This blind scenario is the focus of this chapter.

4.3 Discrete Parameter Definition and Ambiguity

We first define the discrete density map and mass-attenuation spectrum parameters and then

discuss their identifiability.

4.3.1 Density-MapDiscretization andMass-Attenuation SpectrumBasis-FunctionExpansion

Upon spatial-domain discretization into p pixels, approximate the integral
R

`
˛.x; y/ d` with

�T˛:

Z
`

˛.x; y/ d` D �T˛; (4.8)

where ˛ � 0 is a p � 1 vector representing the 2D image that we wish to reconstruct and � � 0

is a p � 1 vector of known weights quantifying how much each element of ˛ contributes to the

X-ray attenuation on the straight-line path `. An X-ray CT scan consists of hundreds of projections

with the beam intensity measured by thousands of detectors for each projection. Denote by N the

total number of measurements from all projections collected at the detector array. For the nth
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measurement, define its discretized line integral as �T
n˛. Stacking all N such integrals into a

vector yields ˆ˛, where

ˆ D

�
�1 �2 � � � �N

�T

2 RN �p (4.9)

is the projection matrix, also known as the Radon transform matrix in a parallel-beam X-ray to-

mographic imaging system. We call the corresponding transformation, ˆ˛, the monochromatic

projection of ˛.

Approximate ι.�/ with a linear combination of J (J � N ) basis functions:

ι.�/ D b.�/I; (4.10a)

where

I , ŒI1; I2; : : : ; IJ �T � 0 (4.10b)

is the J �1 vector of corresponding basis-function coefficients, and the 1�J row-vector function

b.�/ ,
�
b1.�/; b2.�/; : : : ; bJ .�/

�
(4.11)

consists of B-splines [Sch07] of order one (termed B1 splines, illustrated in Fig. 4.1b). In this

case, the decomposition (4.10a) yields nonnegative elements of the spline coefficients I (based

on (4.7)) and thus allows us to impose the physically meaningful nonnegativity constraint (4.10b)

when estimating I . Substituting (4.8) and (4.10a) into (4.6a)–(4.6b) for each of the N measure-

ments yields the following expressions for the incident energy and the N � 1 vector of noiseless
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measurements:

I in.I/ D bL.0/I (4.12a)

Iout.˛;I/ D bLı.ˆ˛/I (4.12b)

where, following the notation introduced in Section 4.1, bLı.s/ D
�
bL.sn/

�N
nD1

is an output basis-

function matrix obtained by stacking the 1 � J vectors bL.sn/ columnwise, and s D ˆ˛ is the

monochromatic projection. Since the Laplace transform of (4.11) (see also (4.13b)) can be com-

puted analytically, bL.s/ has a closed-form expression.

4.3.1.1 Spline selection

We select the spline knots from a growing geometric series .�j /J C1
j D0 with �0 > 0:

�j D qj �0 (4.13a)

and common ratio q > 1, which yields the B1 splines

bj .�/ D

�
� � �j �1

�j � �j �1

; �j �1 � � < �j

�� C �j C1

�j C1 � �j

; �j � � < �j C1

0; otherwise

(4.13b)

that satisfy the q-scaling property:

bj .�/ D bj C1.q�/ (4.13c)

see also Fig. 4.1b. The geometric-series knots (4.13a) appear uniformly spaced in Fig. 4.1b because

the �-axis in this figure is shown in the log scale. When computing bL
j .�T

n˛/, larger j implies expo-

nentially smaller e��T
n ˛� terms within the integral range Œ�j �1; �j C1/. The geometric-series knot
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selection (4.13a) compensates for larger j with a geometrically wider integral range Œ�j �1; �j C1/,

which results in a more effective approximation of (4.6). In particular, this knot selection leads to�
bL

j .�T
n˛/

�J

j D1
with similar values for different values of j , which allows us to balance the weight

of each
�
Ij

�J
j D1

in bL.�T
n˛/I . Furthermore, the geometric-series knots (4.13a) span a range from

�0 to �J C1, which can be made wide with a moderate number of knots J .

The common ratio q determines the resolution of the B1-spline approximation. Here, we select

q and J so that the range of � spanning the mass-attenuation spectrum is constant:

�J C1

�0

D qJ C1
D const: (4.13d)

In summary, the following three tuning constants define our B1-spline basis functions b.�/:

.q; �0; J /: (4.13e)

4.3.2 Density-Map and Mass-Attenuation Spectrum Ambiguities

By noting (4.13c) and the �-scaling property of the Laplace transform,

bj .q�/
L
!

1

q
bL

j

�
s

q

�
; q > 0 (4.14)

we conclude that selecting basis functions
�
b0.�/; b1.�/; : : : ; bJ �1.�/

�
that are q times narrower

than those in b.�/ and density-map and spectral parameters q times larger than ˛ and I : q˛ and

qI , yields the same mean output photon energy. Consequently,

Iout�
˛; Œ0; I2; : : : ; IJ �T

�
D Iout�

q˛; qŒI2; : : : ; IJ ; 0�T
�
: (4.15)

We refer to this property as the shift ambiguity of the mass-attenuation spectrum, which allows us

to rearrange leading or trailing zeros in the mass-attenuation coefficient vector I and position the

central nonzero part of I .
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4.3.3 Rank of bLı.ˆ˛/ and Selection of the Number of Splines J

If bLı.ˆ˛/ does not have full column rank, then I is not identifiable even if ˛ is known; see

(4.12b). The estimation of I may be numerically unstable if bLı.ˆ˛/ is poorly conditioned and

has small minimum singular values. We can think of the noiseless X-ray CT measurements as

bL.s/I sampled at different s D �T
n˛ 2

�
0;maxn.�T

n˛/
�
. The following remark implies that if

we could collect all s 2 Œ0; a�; a > 0 (denoted s), the corresponding bLı.s/ would be a full-rank

matrix.

Remark 4.1. J D 0J �1 is necessary for bL.s/J D 0 over the range s 2 Œ0; a�, where J 2 RJ

and a > 0.

Proof: See [GD15b, Sec. 4.3.3].

If our data collection system can sample over
�
0;maxn.�T

n˛/
�
sufficiently densely, we expect

bLı.ˆ˛/ to have full column rank.

As the number of splines J increases for fixed support Œ�0; �J C1� (see (4.13d)), we achieve

better resolution of the mass-attenuation spectrum, but bLı.ˆ˛/ becomes poorly conditioned with

its smallest singular values approaching zero. To estimate this spectrum well, we should choose

a J that provides both good resolution and sufficiently large smallest singular value of bLı.ˆ˛/.

Fortunately, we focus on the reconstruction of ˛, which is affected by I only through the function

bL.s/I , and bL.s/I is stable as we increase J . Indeed, we observe that when we choose a J

significantly larger than the rank of bLı.ˆ˛/, the estimation of ˛ will be good and bL.s/I stable,

even though the estimation of I is poor due to its non-identifiability. The increase of J will also

increase the computational complexity of signal reconstruction under the blind scenario for which

the mass-attenuation spectrum is unknown.
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4.4 Measurement Model and Its Properties

For an N � 1 vector E of independent Poisson measurements, the NLL in the form of gener-

alized Kullback-Leibler divergence [ZBBR15] is (see also (4.12b))

L.˛;I/ D 1T
�
Iout.˛;I/ � E

�
�

X
n;En¤0

En ln
Iout

n .˛;I/

En

: (4.16)

In the following, we express the NLL (4.16) as a function of ˛ with I fixed and vice versa, and

derive conditions for its convexity under the two scenarios. These results will then be used to

establish biconvexity conditions for this NLL.

NLL of ˛. Recall (4.10a) and define

ιLı.ˆ˛/ D bLı.ˆ˛/I (4.17)

obtained by stacking
�
ιL.�T

n˛/
�N

nD1
columnwise. The NLL of ˛ for fixed I is

Lι.˛/ D 1T
�
ιLı.ˆ˛/ � E

�
�

X
n;En¤0

En ln
ιL
�
�T

n˛
�

En

; (4.18)

which corresponds to the Poisson GLMwith design matrixˆ and link function equal to the inverse

of ιL.�/. See [MN89] for an introduction to GLMs.

To establish convexity of the NLL (4.18), we enforce monotonicity of the mass-attenuation

spectrum ι.�/ in low- and high-� regions and also assume that the mid-� region has higher spec-

trum than the low-� region. Note that we do not require here that ι.�/ satisfy the basis-function

expansion (4.10a); however, (4.10a) will be needed to establish the biconvexity of the NLL in

(4.16). Hence, we define the three � regions using the spline parameters (4.13e) as well as an

additional integer constant

j0 � d.J C 1/=2e: (4.19)
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In particular, �J C1�j0
and �j0

partition the range Œ�0; �J C1� into the low-, mid-, and high-� regions:

Klow, Kmid, and Khigh, respectively, see Fig. 4.1b.

Assumption 4.1. The mass-attenuation spectrum satisfies

A D
n
ι W Œ�0; �J C1�! RC

ˇ̌
ι non-decreasing in Klow;

non-increasing in Khigh, and

ι.�/ � ι
�
�J C1�j0

�
8� 2Kmid

o
: (4.20a)

If the basis-function expansion (4.10a) holds, (4.20a) reduces to

A D
n
I 2 RJ

C

ˇ̌
I1 � I2 � � � � � IJ C1�j0

; Ij0
� � � � � IJ ;

and Ij � IJ C1�j0
; 8j 2 ŒJ C 1 � j0; j0�

o
: (4.20b)

Here, the monotonic low- and high-� regions each contain J � j0 knots, whereas the central

region contains 2j0 � J knots in the B1-spline representation.

In practice, the X-ray spectrum �."/ starts at the lowest effective energy that can penetrate the

object, vanishes at the tube voltage (the highest photon energy), and has a region in the center higher

than the two ends; see Fig. 4.1a. When the support of �."/ is free of K-edges (see the discussion

in Appendix 4.A), the mass-attenuation coefficient �."/ is a monotonic function of "; thus ι.�/ as

a function of � has similar shape as �."/ as a function of ", which justifies Assumption 4.1. If a

K-edge is present within the support of �."/, it is difficult to infer the shape of ι.�/. In most cases,

Assumption 4.1 holds.

For the approximation of ι.�/ using a B1-spline basis expansion, as long as Œ�0; �J C1� is suffi-

ciently large to cover the range of �."/ with " 2 supp.�."//, we can always meet Assumption 4.1

by the appropriate selection of j0.

Multiple different .˛;I/ share the same noiseless output Iout.˛;I/ and thus the same NLL;

see Section 4.3.2. In particular, equivalent .˛;I/ can be constructed by left- or right-shifting the
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mass attenuation spectrum and properly rescaling it and the density-map; see (4.15). Selecting

a fixed j0 in (4.19) can exclude all these equivalent values except the one in which the mass-

attenuation spectrum satisfies (4.20a) and where the biconvexity of the NLL can be established.

Lemma 4.1. Provided that Assumption 4.1 holds, the Poisson NLL Lι.˛/ is a convex function of

˛ over the following region:

n
˛
ˇ̌
ιLı.ˆ˛/ � .1 � V /E; ˛ 2 Rp

C

o
(4.21a)

where

V ,
2qj0

q2j0 C 1
: (4.21b)

Proof: See Appendix 4.B.

Note that (4.21a) is only a subset of the region where Lι.˛/ is convex and that Lemma 4.1

does not assume a basis-function expansion of the mass-attenuation spectrum, only that it satisfies

(4.20a).

The condition in (4.21a) corresponds to lower-bounding Iout
n .˛;I/

ı
En by 1�V for all n. The

constant V is a function of qj0 , which is the ratio of the point where ι.�/ starts to be monotonically

decreasing to the point where the support of ι.�/ starts; see Fig. 4.1b.

NLL of I . The NLL of I for fixed ˛ reduces to a Poisson GLM with design matrix

A D bLı.ˆ˛/ (4.22a)

all of whose elements are positive, and the identity link function:

LA.I/ D 1T .AI � E/ �
X

n;En¤0

En ln
ŒAI�n

En

: (4.22b)

We now prove the convexity of LA.I/.
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Lemma 4.2. The NLL LA.I/ in (4.22b) is a convex function of I for all I 2 RJ
C.

Proof: The Hessian of the NLL in (4.22b)

@2LA.I/

@I@IT
D AT diag.E/ diag�2.AI/A (4.23)

is positive semidefinite. Thus, LA.I/ is convex on RJ
C.

The Hessian expression in (4.23) implies that LA.I/ in (4.22b) is strongly convex if the de-

sign matrix A has full rank. Combining the convexity results in Lemmas 4.1 and 4.2 yields the

biconvexity region for the NLL L.˛;I/ in (4.16).

Theorem 4.1 (Biconvexity of the NLL). Suppose that Assumption 4.1 in (4.20b) holds. Then, the

Poisson NLL (4.16) is biconvex [GPK07] with respect to ˛ and I in the following set:

P D
n
.˛;I/

ˇ̌
Iout.˛;I/ � .1 � V /E;I 2 A;˛ 2 Rp

C

o
; (4.24)

which bounds Iout
n .˛;I/

ı
En from below by 1 � V for all n; see also (4.21b).

Proof: We first show the convexity of P with respect to each variable (˛ and I) with the

other fixed. We then show the convexity of the NLL (4.16) for each variable.

Region A in (4.20b) is a subspace, thus a convex set. Since Iout in (4.12b) is a linear func-

tion of I , the inequalities comparing Iout to constants specify a convex set. Therefore, P˛ D˚
I j .˛;I/ 2 P

	
is convex for fixed ˛ 2 Rp

C, for it is the intersection of the subspace A and

a convex set via Iout. Since bj .�/ � 0,
�
bL

j .s/
�J
j D1
D
R �j C1

�j �1
bj .�/e�s� d� are decreasing func-

tions of s, which, together with the fact that I � 0, implies that bL.s/I is a decreasing function

of s. Since the linear transform ˆ˛ preserves convexity, PI D
˚
˛ j .˛;I/ 2 P

	
is convex with

respect to ˛ for fixed I 2 A. Therefore, P is biconvex with respect to I and ˛.

Observe that P in (4.24) is the intersection of the regions specified by Assumption 4.1 and

Lemmas 4.1 and 4.2. Thus, within P , the Poisson NLL (4.16) is a convex function of ˛ for fixed

I and a convex function of I for fixed ˛, respectively.
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By combining the above region and function convexity results, we conclude that (4.16) is

biconvex within P .

In [GD15b], we establish conditions for biconvexity of the NLL under the lognormal noise

model.

4.5 Parameter Estimation

Our goal is to compute penalized maximum-likelihood estimates of the density-map and mass-

attenuation spectrum parameters .˛;I/ by solving the following minimization problem:

min
˛;I

f .˛;I/ (4.25a)

where

f .˛;I/ D L.˛;I/C ur.˛/C IŒ0;C1/.I/ (4.25b)

r.˛/ D

pX
iD1

sX
j 2Ni

.˛i � j̨ /2 C IŒ0;C1/.˛/ (4.25c)

are the penalized NLL objective function and the density-map regularization term that enforces

nonnegativity and sparsity of the image ˛; u > 0 is a scalar tuning constant. We impose the non-

negativity of the mass-attenuation coefficients (4.10b) using the indicator-function term in (4.25b).

In this chapter, we adopt the Poisson NLL (4.16) and impose gradient-map sparsity of the density-

map image using the TV penalty. Here, Ni is the index set of neighbors of ˛i , where the elements

of ˛ are arranged to form a 2D image: Each set Ni consists of two pixels at most, with one on

the top and the other on the right of the i th pixel, if possible [BT09b]. The optimization problem

in (4.25b) is general and allows for different NLL and density-map regularization terms: [GD15a;

GD15b] use lognormal NLL and the image-sparsity regularization term in the form of the `1 norm

of DWT coefficients of ˛, which is a convex function of ˛.
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4.5.1 Properties of the Objective Function f .˛;I/

Since r.˛/ in (4.25c) and IŒ0;C1/.I/ in (4.25b) are convex functions of ˛ and I for all ˛ � 0

and I � 0, the following holds:

Corollary 4.1. The objective f .˛;I/ in (4.25b) is biconvex with respect to ˛ and I under the

conditions specified by Theorem 4.1.

Although the NLL may have multiple local minima of the form ql y̨ with integer l (see Sec-

tion 4.3.2), those with large l can be eliminated by the regularization penalty. We first exam-

ine the impact of the ambiguity on the scaling of the first derivative of the objective function

f .z/ , f .˛;I/, where z , .˛;I/. From (4.15), we conclude that z0 D
�
˛; Œ0; I2; : : : ; IJ �T

�
and z1 D

�
q˛; qŒI2; : : : ; IJ ; 0�T

�
have the same noiseless output Iout and thus the same NLL.

Hence, the partial derivative of L.z/ , L.˛;I/ over ˛ at z1 is 1=q times that at z0. Mean-

while, the subgradients of the regularization term at z0 and z1 with respect to ˛ are the same.

So, for the same regularization u, it is easier for the penalty term to dominate the subgradient of

f .˛;I/ around z1 than z0. This is also experimentally confirmed: we see that, upon initialization

˛.0/ D ql˛ with some ˛ and large l, the magnitude of the iterates ˛.i/ reduces as the iteration

proceeds.

We now show that the objective function (4.25b) satisfies the KL property [ABRS10], which

is important for establishing local convergence of block-coordinate schemes in biconvex optimiza-

tion problems. The KL property [ABRS10] regularizes the (sub)gradient of a function through its

value at a certain point or over the whole domain and also ensures the steepness of the function

around the optimum so that the length of the gradient trajectory is bounded.

Theorem 4.2 (KL Property). The objective function f .˛;I/ satisfies the KL property in any

compact subset C � dom.f /.

Proof: See Appendix 4.C.

Note that all .˛;I/ that lead to positive noiseless measurements, i.e.Iout.˛;I/ � 0, are in the

domain of f , which excludes the case I D 0 when no incident X-ray is applied; see also (4.12b).
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4.5.2 Minimization Algorithm

The parameters that we wish to estimate are naturally divided into two blocks, ˛ and I . The

large size of ˛ prohibits effective second-order methods under sparsity regularization, whereas

I has much smaller size and only nonnegative constraints, thus allowing for more sophisticated

solvers, such as the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach [Thi89,

Sec. 4.3.3.4] that we adopt here. In addition, the scaling difference between ˛ and I can be

significant, so that the joint gradient method for ˛ and I together would converge slowly. There-

fore, we adopt a block coordinate-descent algorithm to minimize f .˛;I/ in (4.25b), where the

NPG [Nes83; BT09a] and L-BFGS-B [BLNZ95] methods are employed to update estimates of

the density-map and mass-attenuation spectrum parameters, respectively. The choice of block

coordinate-descent optimization is also motivated by the related alternate convex search (ACS)

and block coordinate-descent schemes in [GPK07] and [XY13], respectively, both with conver-

gence guarantees under certain conditions.

We minimize the objective function (4.25b) by alternatively updating ˛ and I using Steps 1

and 2, respectively, where Iteration i proceeds as follows:

1) (NPG) Set the mass-attenuation spectrum ι.�/ D b.�/I.i�1/, treat it as known1, and descend

the regularized NLL function f .˛;I.i�1// D Lι.˛/C ur.˛/ by applying an NPG step for ˛,

which yields ˛.i/:

� .i/
D

1

2

h
1C

q
1C 4

�
� .i�1/

�2i (4.26a)

x̨
.i/
D ˛.i�1/

C
� .i�1/ � 1

� .i/

�
˛.i�1/

� ˛.i�2/
�

(4.26b)

˛.i/
D proxˇ .i/ur

�
x̨

.i/
� ˇ.i/

rLι

�
x̨

.i/
��

(4.26c)

where the minimization (4.26c) is computed using an inner iteration that employs the TV-based

denoising method in [BT09b, Sec. IV], and ˇ.i/ > 0 is an adaptive step size chosen to satisfy

1 This selection corresponds to Lι.˛/ D L
�
˛;I.i�1/

�
; see also (4.18).



www.manaraa.com

91

the majorization condition:

Lι.˛
.i// � Lι.x̨

.i//C .˛.i/
� x̨

.i//T
rLι.x̨

.i//C
1

2ˇ.i/
k˛.i/

� x̨
.i/
k

2
2 (4.26d)

using an adaptation scheme [GD15c] that aims at finding the largest ˇ.i/ that satisfies (4.26d):

i) • if there have been no step-size backtracking events or increase attempts for n consec-

utive iterations (i � n to i � 1), start with a larger step size x̌.i/ D ˇ.i�1/=� where

� 2 .0; 1/ is a step-size adaptation parameter;

• otherwise start with x̌.i/ D ˇ.i�1/;

ii) (backtracking search) select

ˇ.i/
D � ti x̌.i/ (4.27a)

where ti � 0 is the smallest integer such that (4.27a) satisfies the majorization condition

(4.26d); backtracking event corresponds to ti > 0.

We select the initial step size x̌.0/ using the BB method [BB88]. We also apply the function

restart [OC15] to restore the monotonicity and improve convergence; see the following discus-

sion.

2) (BFGS) Set the design matrixA D bLı
�
ˆ˛.i/

�
, treat it as known2, and minimize the regularized

NLL function f
�
˛.i/;I

�
with respect to I ; i.e.,

I.i/
D argmin

I�0
LA.I/ (4.28)

using the inner L-BFGS-B iteration, initialized by I.i�1/.
2 This selection corresponds to LA.I/ D L

�
˛.i/;I

�
; see also (4.22b).
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Iterate between Steps 1 and 2 until the relative distance of consecutive iterates of the density

map ˛ does not change significantly:

k˛.i/
� ˛.i�1/

k2 < �k˛.i/
k2; (4.29)

where � > 0 is the convergence threshold. The convergence criteria for the inner TV-denoising

and L-BFGS-B iterations in Steps 1 and 2 are chosen to trade off the accuracy and speed of the inner

iterations and provide sufficiently accurate solutions to (4.26c) and (4.28); see [GD15b, Sec. IV-

B2] for details.

We refer to the iteration between Steps 1 and 2 as the NPG-BFGS algorithm: it is the first

physical-model–based image reconstruction method for simultaneous blind sparse image recon-

struction and mass-attenuation spectrum estimation from polychromatic measurements; see also

our preliminary work in [GD13]. In [GD13], we approximated Laplace integrals with Riemann

sums, used a smooth approximation of the nonnegativity penalties in (4.25c), and did not employ

signal-sparsity regularization.

If the mass-attenuation spectrum ι.�/ is known and we iterate Step 1 only to estimate the

density-map image ˛, we refer to this iteration as the NPG algorithm (known ι.�/).

If we do not apply the Nesterov’s acceleration (4.26a)–(4.26b) and use only the PG step (4.26c)

to update the density-map iterates ˛, i.e., assign (4.31c) instead of (4.26b) in every iteration, we

refer to the corresponding iteration as the PG-BFGS algorithm.

Scale-and-shift adjustment of the NPG-BFGS and PG-BFGS estimates. Denote by yI and

y̨ the mass-attenuation spectrum parameter and density-map image estimates upon convergence

of the NPG-BFGS iteration. To emphasize the dependence of the objective function (4.25b) on u,

we denote it here by fu.˛;I/. If the last element yIJ of yI is zero, we can trivially improve this

objective function by using the shift ambiguity: remove this zero element by circularly shifting yI

and divide yI and y̨ by q; after this adjustment, we would need to continue the NPG-BFGS iteration

and seek the new local minimum. However, we can avoid additional iteration and simply adjust
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the regularization constant u as well as y̨ and yI by assigning new values to them: .u; y̨; yI/  �
qu; y̨=q; Œ0; yI1; : : : ; yIJ �1�T =q

�
. Apply this adjustment sequentially until the last element of the

new yI is nonzero, which yields a local minimum
�
y̨; yI

�
of the new objective function fu.˛;I/

that is not possible to improve on by a simple shift adjustment. Our empirical experience is that

scale-and-shift adjustment is either not needed (no zero elements at the end of yI) orminor (very few

zero elements): it slightly changes the grid of u over which we search for the best reconstructions;

see also Section 4.6 for discussion on selection of u. The key insight is that blind methods cannot

estimate the magnitude level in density-map reconstructions; see also Fig. 4.4b in Section 4.6.

Hence, difference in density-map magnitude level that these methods exhibit is not significant.

4.5.3 Function Restart and Monotonicity

If f
�
˛;I.i�1/

�
is a convex function of ˛, apply [BT09a, Lemma 2.3] to establish that the

iterate ˛.i/ attains lower (or equal) objective function than the intermediate signal x̨.i/

f
�
˛.i/;I.i�1/

�
� f

�
x̨

.i/;I.i�1/
�
�

1

2ˇ.i/



˛.i/
� x̨

.i/


2

2
; (4.30)

where we have used the fact that step size ˇ.i/ satisfies the majorization condition (4.26d). How-

ever, (4.30) does not guarantee monotonicity of Step 1. We apply the function restart [OC15] to

ensure this monotonicity and improve convergence. In particular, we apply the function restart as

follows: if monotonicity of Step 1 is violated in Iteration i , i.e., if

f
�
˛.i/;I.i�1/

�
> f

�
˛.i�1/;I.i�1/

�
(restart cond.) (4.31a)

set

� .i�1/
D 1 (4.31b)
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and repeat Step 1 using this selection. In this repeated step, themomentum term �.i�1/�1
�.i/

�
˛.i�1/�

˛.i�2/
�
in (4.26b) becomes zero, and

x̨
.i/
D ˛.i�1/ (4.31c)

holds. Consequently, the new Step 1 is monotonic:

f
�
˛.i/;I.i�1/

�
� f

�
˛.i�1/;I.i�1/

�
; (4.31d)

which follows by substituting (4.31c) into (4.30).

Once we can guarantee the monotonicity of Step 1 in every Iteration i , it is easy to establish

the monotonicity of the entire NPG-BFGS iteration:

Remark 4.2 (Monotonicity). Under condition (4.24) of Theorem 4.1, the NPG-BFGS iteration

with function restart is monotonically non-increasing:

f
�
˛.i/;I.i/

�
� f

�
˛.i�1/;I.i�1/

�
(4.32)

for all i .

Proof: Under condition (4.24), f
�
˛;I

�
is a convex function of ˛. In this case, we have

established that (4.31d) holds and Step 1 is monotonic. By Step 2, f
�
˛.i/;I.i�1/

�
� f

�
˛.i/;I.i/

�
and (4.32) follows.

Clearly, PG-BFGS and NPG (for known ι.�/) are monotonic as well under the convexity con-

dition (4.24). To derive the monotonicity results, we have used only the fact that step size ˇ.i/

satisfies the majorization condition (4.26d), rather than using any specific details of the step-size

selection.

Note that the conditions of Theorem 4.1 are only sufficient for establishing the convexity of

f
�
˛;I

�
as a function of ˛.
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In the following, we show that our PG-BFGS algorithm converges to a critical point of the

objective function; interestingly, this convergence analysis does not require convexity of the ob-

jective function with respect to ˛. Unfortunately, these theoretical convergence properties do not

carry over to the NPG-BFGS iteration, which empirically outperforms the PG-BFGS method; see

Figs. 4.5 and 4.10 in Section 4.6.

4.5.4 Convergence Analysis of the PG-BFGS Iteration

We analyze the convergence of the PG-BFGS iteration using arguments similar to those in

[XY13]. Although NPG-BFGS converges faster than PG-BFGS empirically, it is not easy to an-

alyze its convergence due to NPG’s Nesterov’s acceleration step and adaptive step size. In this

section, we denote the sequence of PG-BFGS iterates by
˚�
˛.i/;I.i/

�	1

iD0
.

We have established the monotonicity of the PG-BFGS iteration for step sizes ˇ.i/ that satisfy

the majorization condition, which includes the above step-size selection as well.

Since our f .˛;I/ are lower bounded (which is easy to argue; see Appendix 4.C), the sequence

f .˛.i/;I.i// converges. It is also easy to conclude that the sequence ai ,


˛.i/�˛.i�1/



2

2
=ˇ.i/ is

Cauchy by showing
P1

iD0 ai < C1 according to (4.30) when (4.31c) holds. Thus ˛.i/ converges

if fˇ.i/g1iD1 is upper bounded.

A better result
P1

iD0



˛.i/ � ˛.iC1/




2
< C1 [XY13] can be established because f .˛;I/

satisfies the KL property. This property has been first used in [ABRS10] to establish the critical-

point convergence for an alternating proximal-minimization method, which is then extended in

[XY13] to the more general block coordinate-descent method. Using the analysis in [ABRS10],

[LZZ+15] shows the convergence of the alternating proximal-minimization algorithm by applying

the KL property to a biconvex objective function.

Next, we make the following claim on the convergence of the PG-BFGS iteration.

Theorem 4.3. Consider the sequence
˚�
˛.i/;I.i/

�	1

iD0
of PG-BFGS iterates, with step size ˇ.i/

satisfying the majorization condition (4.26d). Assume

1) bounded step size: there exist positive ˇC > ˇ� > 0 such that ˇ.i/ 2 Œˇ�; ˇC� for all i ,
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2) L.˛;I/ is a strongly convex function of I , and

3) the gradient of L.˛;I/ with respect to .˛;I/ is Lipschitz continuous.

Then
�
˛.i/;I.i/

�
converges to one of the critical points .˛?;I?/ of f .˛;I/ and

1X
iD1



˛.iC1/
� ˛.i/




2

< C1;

1X
iD1



I.iC1/
� I.i/




2

< C1: (4.33)

Proof: We apply [XY13, Lemma 2.6] to establish the convergence of
˚�
˛.i/;I.i/

�	C1

iD1
.

Since r.˛/ in (4.25c) and IŒ0;C1/.I/ are lower-bounded, we need to prove only that (4.16) is

lower-bounded. By using the fact that ln x � x � 1, we have

L.˛;I/ � 0: (4.34)

According to the assumption, f .˛;I/ is strongly convex over I and the step size ˇ.i/ is bounded.

Hence, there exist constants 0 < l < L < C1 such that

f
�
˛.iC1/;I.i/

�
� f

�
˛.iC1/;I.iC1/

�
�

l

2



I.i/
� I.iC1/



2

2
(4.35a)

L �
1

ˇ.i/
� l: (4.35b)

In addition, f .˛;I/ satisfies the KL property according to Theorem 4.2. We have now verified

all conditions of [XY13, Lemma 2.6].

The conditions for strong convexity of L.˛;I/ as a function of I are discussed in Section

4.4; see also Section 4.3.3. The KL property can provide guarantees on the convergence rate

under additional assumptions; see [ABRS10, Theorem 3.4]. The convergence properties of NPG-

BFGS are of great interest because NPG-BFGS converges faster than PG-BFGS; establishing these

properties is left as future work.
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Figure 4.2: (a) Density-map image used to generate the sinogram, and (b) mass attenuation and
incident X-ray spectrum as functions of the photon energy ".

4.6 Numerical Examples

We now evaluate the proposed algorithms using simulated and real-data examples.

We construct the fan-beam X-ray projection transform matrix ˆ and its adjoint operator ˆT

directly on GPU with circular masks [DGQ11]; the multi-thread version on CPU is also available;

see https://github.com/isucsp/imgRecSrc, which also contains Matlab implementation of

the proposed algorithms.

4.6.1 Simulation Example

Consider the reconstruction of the 512 � 512 image in Fig. 4.2a of an iron object with density-

map ˛true. We generated a fan-beam polychromatic sinogram, with distance from the X-ray source

to the rotation center equal to 2000 times the pixel size, using the interpolated mass attenuation

�."/ of iron [HS95] and the incident spectrum �."/ from tungsten anode X-ray tubes at 140 keV

with 5% relative voltage ripple [BS97]; see Fig. 4.2b. The mass-attenuation spectrum ι.�/ is

constructed by combining �."/ and �."/ and shown in Fig. 4.1b, see also Fig. 4.1a. Our simulated

approximation of the noiseless measurements uses 130 equi-spaced discretization points over the

range 20 keV to 140 keV. We simulated independent Poisson measurements .En/N
nD1 with means

.E En/N
nD1 D Iout.˛;I/. Wemimic real X-ray CT system calibration by scaling projection matrix

https://github.com/isucsp/imgRecSrc
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ˆ and spectrum �."/ so that the maximum and minimum of the noiseless measurements .E En/N
nD1

are 216 and 20, respectively. Here, the scale ofˆ corresponds to the real size that each image pixel

represents, and the scale of �."/ corresponds to the current of the electrons hitting the tungsten

anode as well as the overall scanning time.

Our goal is to reconstruct a 512 � 512 density-map using the measurements from an energy-

integrating detector array of size 512 for each projection.

Since the true density-map is known, we adopt RSE as the main metric to assess the perfor-

mance of the compared algorithms:

RSEfy̨g D 1 �

 
y̨

T
˛true

ky̨k2k˛truek2

!2

(4.36)

where ˛true and y̨ are the true and reconstructed signals, respectively. Note that (4.36) is invariant

to scaling y̨ by a nonzero constant, which is needed because the magnitude level of ˛ is not identi-

fiable due to the ambiguity of the density-map and mass-attenuation spectrum; see Section 4.3.2.

We compare

• the traditional FBP methods

– without linearization [KS88, Ch. 3] (termed FBP) and

– with linearization to correct for the polychromatic source [Her79] (linearized FBP)

based on the ‘data’

y D �lnı E (without linearization) (4.37a)

y D
�
ιL
��1

ı
.E/ (with linearization) (4.37b)

respectively;
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• linearized basis pursuit denoising (linearized BPDN), which applies the NPG approach to

solve the analysis BPDN problem [BT09b]: min˛
1
2
ky �ˆ˛k2

2C u0r.˛/, where y are the

linearized measurements in (4.37b) and the penalty r.˛/ has been defined in (4.25c);

• our

– NPG-BFGS algorithm with the B1-spline tuning constants (4.13e) chosen to satisfy3

qJ
D 103; �d0:5.J C1/e D 1; J D 30 (4.38)

– NPG (known ι.�/) algorithm for estimating ˛

with n D 4; see Section 4.5.2.

The linearizing transform (4.37b) assumes knowledge of the mass-attenuation spectrum ι.�/

and, in the absence of noise, leads to the linear model y D ˆ˛ under the general polychromatic-

source scenario. In contrast, the standard logarithm transformation of the X-ray measurements

(4.37a) ignores the hardening effect and can possibly lead to the linear model only for monochro-

matic X-ray sources. If the X-ray source is monochromatic, (4.37a) and (4.37b) coincide up to a

known additive constant, and the two FBP methods are identical; in this case, linearized BPDN

also coincides with the standard analysis BPDN approach applied to X-ray CT data.

For all methods that use sparsity and nonnegativity regularization (NPG-BFGS, NPG, and

linearized BPDN), the regularization constants u and u0 have been tuned manually for the best

average RSE performance for each number of projections using a 9-point grid spanning 9 orders

of magnitude.

All iterative algorithms employ the convergence criterion (4.29) with the threshold � D 10�6

and the maximum number of iterations set to 4000. We initialize iterative reconstruction schemes

with orwithout linearization using the corresponding FBP reconstructions; see also [GD15b, Sec. IV-

B4] for details on NPG-BFGS initialization.
3 This selection ensures sufficient coverage (three orders of magnitude) and resolution (30 basis functions) of the

basis-function representation of the mass-attenuation spectrum and centers its support around 1.
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RSE=11.83%

(a) FBP

RSE=7.12%

(b) linearized FBP

RSE=1.77%

(c) NPG-BFGS0

RSE=0.55%

(d) linearized BPDN

RSE=0.18%

(e) NPG-BFGS and
NPG (known ι.�/)

Figure 4.3: Reconstructions from 60 projections.
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Figure 4.4: (a)–(b) Reconstruction profiles of different methods from 60 projections and (c) the
polychromatic measurements as function of the monochromatic projections and corresponding
fitted inverse linearization curves.
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Here, the non-blind linearized FBP, NPG (known ι.�/), and linearized BPDNmethods assume

known ι.�/ (which requires knowledge of the incident spectrum of the X-ray machine and mass

attenuation (material)), computed using (4.10a), with I equal to the exact sampled ι.�/ and J D

100 spline basis functions spanning three orders of magnitude.

Neither FBP nor NPG-BFGS assumes knowledge of the mass-attenuation spectrum ι.�/: FBP

ignores the polychromatic-source effects whereas NPG-BFGS corrects blindly for these effects

without knowledge of ι.�/.

Figs. 4.3 and 4.4 show the reconstructed density-map images and profiles of different methods

from 60 equi-spaced fan-beam projections with spacing 6ı, using one realization of noisy Poisson

measurements. Fig. 4.5 shows the RSEs of several methods as functions of the iteration index i

and demonstrates that RSE of NPG-BFGS decreases significantly faster with increasing i than the

RSE of PG-BFGS; NPG-BFGS also converges faster than PG-BFGS. The FBP reconstruction in

Fig. 4.3a is corrupted by both aliasing and beam-hardening (cupping and streaking) artifacts. Lin-

earized FBP removes the beam-hardening artifacts but retains the aliasing artifacts and enhances

noise due to the zero-forcing nature of linearization; see Fig. 4.3b. Linearized BPDN enforces

the signal nonnegativity and sparsity constraints and achieves a smooth reconstruction in Fig. 4.3d

with a 0.55% RSE. Thanks to the superiority of the proposed model that accounts for both the

polychromatic X-ray source and Poisson noise, NPG-BFGS and NPG achieve the best (and nearly

the same) reconstructions; see Fig. 4.3e.

We also show in Fig. 4.3c the reconstruction by the NPG-BFGS method with very small u (la-

beled NPG-BFGS0), which effectively removes the signal sparsity constraint and imposes only the

signal nonnegativity constraint; consequently, Step 1 in NPG-BFGS0 iteration has a closed form

and reduces to simple nonnegativity thresholding. Hence, NPG-BFGS0 is a maximum-likelihood

(ML) approach that aims at minimizing the NLL (4.16) subject to the physical parameter con-

straints ˛ � 0 and I � 0. As NPG-BFGS0 iterates, its RSE decreases, reaches a minimum, and

then increases; see Fig. 4.5. This is a common behavior for unregularized ML image reconstruc-

tion approaches [LV89]. Fig. 4.3c shows this method’s reconstruction at iteration step i D 500,
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Figure 4.5: The RSEs as functions of the iteration index i .

which gives the best RSE; see also Fig. 4.5. Since it terminates early and has a simple Step 1, NPG-

BFGS0 running only 500 iterations is roughly 8 times faster than NPG-BFGS. The NPG-BFGS0

method can be thought of as an improved version of [GD13], which also imposes only signal non-

negativity. A comparison of NPG-BFGS0 and NPG-BFGS shows the benefit of signal-sparsity

regularization.

Figs. 4.4a and 4.4b show the reconstruction profiles of the 250th column, indicated by the red

line in Fig. 4.3a. Note that the “tail” in the linearized BPDN reconstruction in Fig. 4.3d fades

quickly and does not maintain the sharp end; see also the small bump in its corresponding profile

in Fig. 4.4b. Recall that NPG-BFGS cannot identify the magnitude level of the density-map image

˛, which explains the corresponding magnitude discrepancy between NPG-BFGS, NPG-BFGS0,

and the non-blind methods in Fig. 4.4b. We have corrected this discrepancy manually in Fig. 4.3

because we wish to show visual quality and ability of different methods to remove artifacts and

suppress noise, rather than the trivial difference in image contrast.

In Fig. 4.4c, we show the scatter plots with 1000 randomly selected points representing FBP

and NPG-BFGS reconstructions from 60 fan-beam projections. Denote by
�
y̨; yI

�
the estimate

of .˛;I/ obtained upon convergence of the NPG-BFGS iteration. The y-coordinates in the scat-

ter plots in Fig. 4.4c are the noisy measurements in log scale �ln En, and the corresponding x-

coordinates are the monochromatic projections �T
n y̨FBP (red) and �

T
n y̨ (green) of the estimated
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Figure 4.6: Average RSEs as functions of the number of projections.

density-maps. �ln
�
bL.�/yI

�
is the inverse linearization function that maps monochromatic projec-

tions to fitted noiseless polychromatic projections �ln Iout
n .y̨; yI/. The vertical-direction differ-

ences between the NPG-BFGS scatter plot and the corresponding linearization curve show good-

ness of fit between the measurements and our model.

Since FBP assumes a linear relation between �lnı Iout and ˆ˛, its scatter plot (red) can be

fitted by a straight line y D x, as shown in Fig. 4.4c. A few points in the FBP scatter plot with

ln En D 0 and positive monochromatic projections indicate severe streaking artifacts. Observe

relatively large residuals with bias, which remain even when more sophisticated linear models, e.g.

iterative algorithms with sparsity and nonnegativity constraints, were adopted, thereby necessitat-

ing the need for accounting for the polychromatic source. The nonnegativity constraints on ˛ are

particularly important for good estimation of bL.�/I .

Fig. 4.6 shows the average RSEs (over 5 Poisson noise realizations) of different methods as

functions of the number of fan-beam projections in the range from 0° to 359°. Average RSEs

of the methods that do not assume knowledge of the mass-attenuation spectrum ι.�/ are shown

using solid lines; dashed lines represent non-blind methods that assume known mass-attenuation

spectrum ι.�/. Red color represents methods that employ both signal-sparsity regularization and

nonnegativity image constraints, black is for the method that employs the nonnegativity image
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constraints only, and blue marks the methods that apply neither signal-sparsity regularization nor

nonnegativity image constraints.

FBP ignores the polychromatic nature of the measurements; consequently, it performs poorly

and does not improve as the number of projections increases. Linearized FBP, which assumes

perfect knowledge of the mass-attenuation spectrum, performs much better than FBP, as shown in

Fig. 4.6. Thanks to the signal nonnegativity and sparsity that it imposes, linearized BPDN achieves

up to 20 times smaller RSEs compared with the linearized FBP. However, due to its zero-forcing

nature, linearized BPDN enhances noise and breaches the Poisson measurement model, which

explains its inferior performance compared with NPG (known ι.�/). Linearized BPDN exhibits a

noise floor as the number of projections increases.

FBP ignores the polychromatic nature of the measurements; consequently, it performs poorly

and does not improve as the number of projections increases. Linearized FBP, which assumes

perfect knowledge of the mass-attenuation spectrum, performs much better than FBP, as shown in

Fig. 4.6. Thanks to the signal nonnegativity and sparsity that it imposes, linearized BPDN achieves

up to 20 times smaller RSEs compared with the linearized FBP. However, due to its zero-forcing

nature, linearized BPDN enhances noise and breaches the Poisson measurement model, which

explains its inferior performance compared with NPG (known ι.�/).

As expected, NPG (known ι.�/) performs slightly better than NPG-BFGS because it uses

perfect knowledge of ι.�/. NPG (known ι.�/) and NPG-BFGS attain RSEs that are 24% to 37%

of that achieved by linearized BPDN, which can be attributed to optimal statistical processing by

these methods, in contrast with the suboptimal linearization. RSEs of NPG (known ι.�/) and NPG-

BFGS reach a noise floor when the number of projections increases beyond 180. It is remarkable

that the blind NPG-BFGS method effectively matches the performance of NPG (known ι.�/).

4.6.2 Real-Data Examples

We compare the NPG-BFGS and linear FBP methods by applying them to reconstruct two

industrial objects containing defects, labeled C-I and C-II, from real fan-beam projections. Here,
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C-I

360
(a) FBP

360
(b) NPG-BFGS (u D 10�5)

C-II

360
(c) FBP

360
(d) NPG-BFGS0, i D 500

360
(e) NPG-BFGS .u D 10�5/

360
(f) NPG-BFGS (u D 10�4)

120
(g) FBP

120
(h) NPG-BFGS0, i D 500

120
(i) NPG-BFGS (u D 10�5)

Figure 4.7: Real X-ray CT reconstructions of objects C-I and C-II from (a)–(f) 360 and (g)–(h)
120 projections.
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Figure 4.8: C-II object reconstruction profiles from 360 projections with (a)–(b) u D 10�5 and
(c)–(d) u D 10�4 used by the NPG-BFGS method.

NPG-BFGS achieves visually good reconstructions for u D 10�5, presented in Fig. 4.7, where we

also show its reconstruction for u D 10�4.

The C-I data set consists of 360 equi-spaced fan-beam projections with 1° separation collected

using an array of 694 detectors, withX-ray source to rotation center distance equal to 3492 times the

detector size. Figs. 4.7a and 4.7b show 512 � 512 density-map image reconstructions of object C-I

using the FBP and NPG-BFGS methods, respectively. The linear FBP reconstruction, which does

not account for the polychromatic nature of the X-ray source, suffers from severe streaking and

cupping artifacts, whereas the NPG-BFGS reconstruction removes these artifacts by accounting

for the polychromatic X-ray source.

The C-II data set consists of 360 equi-spaced fan-beam projections with 1° separation col-

lected using an array of 1380 detectors, with X-ray source to rotation center distance equal to 8696

times the detector size. Figs. 4.7c–4.7e show 1024 � 1024 density-map image reconstructions of
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Figure 4.10: Centered objectives as functions of the iteration index i .

object C-II by the FBP, NPG-BFGS0, and NPG-BFGS methods, respectively. The NPG-BFGS

and NPG-BFGS0 reconstructions do not have streaking and cupping artifacts exhibited by FBP.

NPG-BFGS0 terminates after 500 iterations and is 2 to 3 times faster than NPG-BFGS.

Figs. 4.7g–4.7i show the FBP, NPG-BFGS0 (terminated at i D 500 iterations), and NPG-

BFGS reconstructions from a downsampled C-II data set with 120 equi-spaced fan-beam pro-

jections with 3° separation. The FBP reconstruction in Fig. 4.7g exhibits both beam-hardening

and aliasing artifacts. In contrast, the NPG-BFGS reconstruction in Fig. 4.7i does not have these

artifacts because it accounts for the polychromatic X-ray source and employs signal-sparsity regu-

larization in (4.25c). Indeed, if we reduce regularization constant u sufficiently, the aliasing effect

will occur in the NPG-BFGS reconstruction in Fig. 4.7i as well. A comparison of NPG-BFGS0

and NPG-BFGS shows the benefit of signal-sparsity regularization, particularly its ability to re-
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duce noise. If we run NPG-BFGS0 beyond i D 500 iterations, it will exhibit aliasing artifacts, in

addition to noise.

Fig. 4.8 shows the reconstruction profiles of the 337th and 531th rows highlighted by the red

horizontal lines across Figs. 4.7c and 4.7e. Noise in the NPG-BFGS reconstructions can be reduced

by increasing regularization parameter u: Figs. 4.8c and 4.8d show the corresponding NPG-BFGS

reconstruction profiles for u D 10�4, which is 10 times that in Figs. 4.8a and 4.8b.

The NPG-BFGS reconstructions of C-I and C-II have higher contrast around the inner region

where cracks reside, which may be due to the detector saturation that leads to measurement trunca-

tion, scattering, noise-model mismatch, or the bowtie filter applied to the X-ray source. This effect

is visible in the C-I reconstruction in Fig. 4.7b and is barely visible in the C-II reconstruction in

Fig. 4.7e, but it can be observed in the profiles in Fig. 4.8. We leave further verification of causes

and potential correction of this problem to future work and note that this issue does not occur in

the simulated-data examples that we constructed; see Section 4.6.1.

In Fig. 4.9, we show the scatter plots with 1000 randomly selected points representing FBP

and NPG-BFGS reconstructions of the C-II object from 360 projections. A few points in the

FBP scatter plot with ln En D 0 and positive monochromatic projections indicate severe streaking

artifacts, which we also observed in the simulation example; see Fig. 4.4c.

We now illustrate the advantage of using Nesterov’s acceleration in Step 1 of NPG-BFGS.

Fig. 4.10 shows the centered objective f .˛;I/�fMIN with u D 10�5 as a function of the iteration

index i for the NPG-BFGS and PG-BFGS methods applied to the C-II reconstruction from 360

projections; here fMIN D minx f .x/. Thanks to the Nesterov’s acceleration (4.26b), NPG-BFGS

is 2 to 3 times faster than PG-BFGS.

4.7 Conclusion

We developed a model for single-material beam-hardening artifact correction that requires no

more information than the conventional FBP method. The proposed model relies on separability
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of the attenuation to combine the variations of the mass attenuation and X-ray spectrum into the

mass-attenuation spectrum. We

• used this model to develop a framework for reconstructing density-map images that are

sparse in an appropriate transform domain from polychromatic CT measurements under the

blind scenario where the material of the inspected object and incident-energy spectrum are

unknown,

• established the KL property and gave sufficient conditions for the biconvexity of the un-

derlying objective function with respect to the density-map and mass-attenuation spectrum

parameters under the Poisson measurement scenario, and

• developed a block-coordinate descent algorithm for constrained minimization of this objec-

tive function.

Numerical experiments on both simulated and real X-ray CT data were presented. Our blind

method for sparse X-ray CT reconstruction matches or outperforms non-blind linearization meth-

ods that assume perfect knowledge of the X-ray source and material properties. Future work will

include extending our parsimonious polychromatic measurement-model parameterization to mul-

tiple materials [ZTB+14] and developing corresponding reconstruction algorithms.

Appendices

4.A Mass-Attenuation Parameterization

All mass-attenuation functions �."/ encountered in practice can be divided into piecewise-

continuous segments, where each segment is a differentiable monotonically decreasing function

of "; see [HS95, Tables 3 and 4] and [Hud10, Sec. 2.3]. The points of discontinuity in �."/ are

referred to as K-edges and are caused by the interaction between photons and K shell electrons,

which occurs only when " reaches the binding energy of the K shell electron. One example in

Fig. 4.11 is the mass attenuation coefficient curve of iron with a single K-edge at 7.11 keV.
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Figure 4.11: The mass attenuation coefficients � of iron versus the photon energy " with a K-edge
at 7.11 keV.

We define the domain E of " and partition it into M C 1 intervals
�
.em; emC1/

�M
mD0

with

e0 D min.E/ and eMC1 D max.E/, such that in each interval �."/ is invertible and differentiable.

Here, E is the support set of the incident X-ray spectrum �."/ and .em/M
mD1 are theM K-edges inE .

Taking Fig. 4.11 as an example, there is only one K-edge at e1, given that the incident spectrum

has its support as .e0; e2/. The range and inverse of �."/ within .em; emC1/ are .um; vm/ and

"m.�/, respectively, with um , inf"%emC1
�."/ < vm , sup"&em

�."/. Then, the noiseless

measurement in (4.4b) can be written as

Iout
D

l
MX

mD0

1.um;vm/.�/�."m.�//
ˇ̌
"0

m.�/
ˇ̌
e��

R
˛.x;y/d` d�;

and (4.6b) and (4.6a) follow by noting that

ι.�/ D

MX
mD0

1.um;vm/.�/�."m.�//
ˇ̌
"0

m.�/
ˇ̌
� 0 (4.39)

and that Iout equals I in when ˛.x; y/ D 0. Here, 1.um;vm/.�/ is an indicator function that takes

value 1 when � 2 .um; vm/ and 0 otherwise. Observe that (4.39) reduces to (4.7) when M D 0.
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4.B Proof of Lemma 4.1

We first introduce a lemma.

Lemma 4.3. For ι.�/ that satisfy Assumption 4.1, the following holds:

w ,
“ h

�� �
qj0

.qj0 C 1/2
.�C �/2

i
ι.�/ι.�/h.� C �/ d� d�

� 0 (4.40)

for q > 1 and any nonnegative function h W R! RC.

Proof: In Fig. 4.12, the .�; �/ coordinates ofP ,B andN are .�0; 0/, .�j0
; 0/ and .�J C1; 0/,

respectively; the line OS is defined by � D �.

Considering the finite support set of �.�/, the effective integral range is Œ�0; �J C1�2, which is

the rectangle RMSJ in Fig. 4.12. Using the symmetry between � and � in (4.40), we change the

integral variables of (4.40) by rotating the coordinates by 90ı:

� D
N� � N�
p

2
; � D

N�C N�
p

2
(4.41)
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which yields

w D

p
2�J C1Z

p
2�0

g. N�/Z
0

Nw. N�; N�/ d N� h
�p

2 N�
�
d N� (4.42a)

where

Nw. N�; N�/ , z. N�; N�/ι

�
N�C N�
p

2

�
ι

�
N� � N�
p

2

�
(4.42b)

z. N�; N�/ ,
 

qj0 � 1

qj0 C 1

!2

N�2
� N�2 (4.42c)

g. N�/ ,

„
N� �
p

2�0; N� � 1
p

2
.�0 C �J C1/

p
2�J C1 � N�; N� > 1

p
2
.�0 C �J C1/

(4.42d)

and (4.42a) follows because (4.42b) is even-symmetric with respect to N�. Hence, the integration

region is reduced to the triangle RSJ .

Note that z. N�; N�/ � 0 in the cone between lines OH and OI , [both of which are specified

by z. N�; N�/ D 0], which implies that Nw. N�; N�/ � 0 within RCE and CSQ; hence, the integrals of

Nw. N�; N�/h
�p

2 N�
�
over RCE and CSQ are nonnegative and, consequently,

w �
“
R

Nw. N�; N�/ d N� h
�p

2 N�
�
d N�: (4.43)

Now

R ,
(

. N�; N�/

ˇ̌̌̌
N� � N�
p

2
2 Œ�0; �j0

�;
N�C N�
p

2
2 Œ�j0

; �J C1�

)
(4.44)

is our new integration region, which is the rectangle ECQJ .

Next, we split the inner integral over N� on the right-hand side of (4.43) for fixed N� into two

regions: z. N�; N�/ � 0 and z. N�; N�/ < 0, i.e., trapezoid ECQI and triangle EIJ , and prove that
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the positive contribution of the integral over ECQI is larger than the negative contribution of the

integral over the EIJ .

The line OI is specified by z. N�; N�/ D 0, and the .�; �/-coordinate of I in Fig. 4.12 is thus

.�J C1�j0
; �J C1/. Define

c ,
p

2

1C qj0
(4.45)

and note that ECQI � .Klow [Kmid/�Khigh and EIJ �Klow �Khigh. We now use Assump-

tion 4.1 to conclude that the following hold within R:

• When z. N�; N�/ � 0, i.e., in region ECQI ,

ι.�/ j�D
N�C N�p

2

� ι
�
cqj0 N�

�
(4.46a)

ι.�/ j�D
N�� N�p

2

� ι
�
c N�
�

(4.46b)

where (4.46a) follows because � D N�CN�
p

2
takes values between �j0

and cqj0 N� 2 Œ�j0
; �J C1�;

i.e., � 2 Khigh and ι.�/ decreases in Khigh. (4.46b) follows because � D N��N�
p

2
takes values

between c N� 2 Œ�0; �J C1�j0
� and �j0

; i.e., � crosses Klow (ι.�/ increasing) and Kmid (ι.�/

high) regions. Here, .c N�; cqj0 N�/ is the .�; �/-coordinate of one point on line OI specified

by N� in . N�; N�/-coordinate system.

• When z. N�; N�/ < 0, i.e., in region EIJ ,

ι.�/ j�D
N�C N�p

2

< ι
�
cqj0 N�

�
(4.46c)

ι.�/ j�D
N�� N�p

2

< ι
�
c N�
�

(4.46d)

where (4.46c) follows because � D N�CN�
p

2
> cqj0 N�, i.e., � 2 Khigh, and (4.46d) follows

because � D N��N�
p

2
< c N�, i.e., � 2Klow.
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By combining (4.46) and (4.43), we have

w �

.�J C1 C �J C1�j0/=
p

2Z
.�0 C �j0/=

p
2

Z
fN� j . N�; N�/2Rg

z. N�; N�/ d N� Nh. N�/ d N� (4.47)

where Nh. N�/ , ι
�
cqj0 N�

�
ι
�
c N�
�
h
�p

2 N�
�
� 0. It is easy to verify that

R
fN� j . N�; N�/2Rg

z. N�; N�/ d N�

is an increasing function of N� over the range of the outer integral Œ.�0 C �j0
/=
p

2; .�J C1 C

�J C1�j0
/=
p

2�, and, consequently,

Z
fN� j . N�; N�/2Rg

z. N�; N�/ d N� � 0; (4.48)

where the equality is attained for N� D .�0 C �j0
/=
p

2. Finally, (4.40) follows from (4.47) and

(4.48).

This proof of convexity of Lemma 4.3 is conservative as we loosen the positive integrals in

regions RCE and CSQ by replacing them with zeros.

We now use Lemma 4.3 to prove the convexity of Lι.˛/ in Lemma 4.1. Note that the mass-

attenuation spectrum ι.�/ is considered known in Lemma 4.1. We define �.�/ , ιL.�/ and the

corresponding first and second derivatives: P�.s/ D .��ι/L.s/ and R�.s/ D
�
�2ι
�L

.s/. Observe

that Iout
D

�
Iout

n

�N
nD1
D �ı.ˆ˛/ D

�
�.�T

n˛/
�N

nD1
. For notational simplicity, we omit the

dependence of Iout on ˛ and I and use Iout and �ı.ˆ˛/ interchangeably.

We use the identities

@�ı.ˆ˛/

@˛T
D diag

�
P�ı.ˆ˛/

�
ˆ (4.49a)

@�.�T
n˛/

@˛@˛T
D R�

�
�T

n˛
�
�n�

T
n (4.49b)
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to compute the gradient and Hessian of the Poisson NLL in (4.18):

@Lι.˛/

@˛
D ˆT diag

�
P�ı

�
ˆ˛

�� h
1 � diag�1

�
Iout�Ei (4.50a)

@Lι.˛/

@˛@˛T
D ˆT diag�2

�
Iout� diag .E/ diag .x/ˆ (4.50b)

where the N � 1 vector x D .xn/N
nD1 is defined as

xn D
P�2
�
s
�
C R�

�
s
�
�.s/

�
Iout

n

En

� 1

� ˇ̌̌̌
sD�T

n ˛

: (4.50c)

Since Iout
n � .1 � V /En � 0 according to (4.21a), we have

Iout
n

En

� 1 � �V (4.51)

and

xn �

“ �
�� � �2V

�
ι.�/ι.�/ expŒ�.�C �/�T

n˛� d� d� (4.52a)

D

“ �
�� �

�2 C �2

2
V
�
ι.�/ι.�/ expŒ�.�C �/�T

n˛� d� d� (4.52b)

�
.qj0 C 1/2

q2j0 C 1
w � 0 (4.52c)

where (4.52a) follows by applying inequality (4.51) to (4.50c), using the Laplace-transform iden-

tity for derivatives (4.2), and combining the multiplication of the integrals; and (4.52b) is due to

the symmetry with respect to � and �. Now, plug (4.21b) into (4.52b) and apply Lemma 4.3

with h.�/ D e���T
n ˛ to conclude (4.52c). Therefore, the Hessian of Lι.˛/ in (4.50b) is positive

semidefinite.
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4.C Proof of Theorem 4.2

According to [XY13], real-analytic and semialgebraic functions and their summations satisfy

the KL property automatically. Therefore, the proof consists of showing the following two parts:

(a) the NLL in (4.16) is a real-analytic function of .˛;I/ on C � dom.f / and

(b) both r.˛/ in (4.25c) and IŒ0;C1/.I/ are semialgebraic functions.

Real-analyticNLL.TheNLL in (4.16) is in the form ofweighted summations of termsbL.�T
n˛/I ,

ln
�
bL.�T

n˛/I
�
, and ln2

�
bL.�T

n˛/I
�
for n D 1; 2; : : : ; N . Weighted summation of real-analytic

functions is real-analytic; hence, we need to prove that f1.t/ D bL
�
�T .˛Ct
/

�
.ICtJ /; f2.t/ D

ln f1.t/, and f3.t/ D f 2
2 .t/ are real-analytic functions. Since

�
fi.t/

�3
iD1

are smooth, it is suffi-

cient to prove that the mth derivatives, f .m/
i .t/, are bounded for all m, .˛;I/, .
;J /, and t such

that .˛C t
;I C tJ / 2 dom.f /.

The mth derivative of f1.t/ is

f
.m/
1 D .�T
/m

�
.��/mb

�L
.˛C t
/.I C tJ /

Cm.�T
/m�1
�
.��/m�1b

�L
.˛C t
/J (4.53)

which is bounded for any ˛, I , 
 , J , and t such that .˛C t
;I C tJ / is in one of compact

subsets C � dom.f /.

For any compact setC � dom.f /, there exists � > 0 such that f1.t/ � � for all .˛C t
;I C tJ / 2

C. ln.�/ and .�/2 are analytic on Œ�;C1/. Since the compositions and products of analytic func-

tions are analytic [KP02, Ch. 1.4], both f2.t/ and f3.t/ are analytic. Therefore, the NLL in (4.16)

is analytic.

Semialgebraic regularization terms. According to [XY13],

i) the `2 norm k�k2 is semialgebraic,

ii) the indicator function IŒ0;C1/.�/ is semialgebraic,
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iii) finite sums and products of semialgebraic functions are semialgebraic, and

iv) the composition of semialgebraic functions are semialgebraic.

Therefore, IŒ0;C1/.˛/ and IŒ0;C1/.I/ are both semialgebraic. Since we can write

sX
j 2Ni

.˛i � j̨ /2 D kPi˛k2 (4.54)

for some matrix Pi , using i), iii), and iv) leads to semialgebraic (4.54), thus semialgebraic r.˛/

in (4.25c). Finally, according to [XY13], the sum of real-analytic and semialgebraic functions

satisfies the KL property. Therefore, f .˛;I/ satisfies the KL property on a compact subset of

domf .˛;I/.
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CHAPTER 5. CONCLUSION

We developed a fast framework for reconstructing signals that are sparse in a transform domain

and belong to a closed convex set by employing a projected proximal-gradient scheme with Nes-

terov’s acceleration, restart, and adaptive step size. This framework allows us to construct one of

the first Nesterov-accelerated proximal-gradient reconstruction algorithm for Poisson compressed

sensing. We derived convergence-rate upper-bound that accounts for inexactness of the proximal

operator and proved the convergence of iterates. When compared with the state-of-the-art, our

proposed PNPG approach is computationally efficient.

The regularization constant is a key parameter for achieving good reconstructions. We derived

upper bounds on this constant for convex sparse signal reconstruction and presented for the first

time such bounds for total-variation regularization. These bounds can be used to construct accu-

rate prior distributions for the regularization constant and to design continuation procedures. The

potential future work can be to obtain simpler expressions for upper bounds U for isotropic 2D

TV regularization and low-rank matrix models with nuclear-norm regularization, based on Theo-

rem 3.1.

Finally, we developed the first physical-model–based image reconstructionmethod for simulta-

neous blind sparse image reconstruction and mass-attenuation spectrum estimation from polychro-

matic measurements. We developed an algorithm that alternatively updates the attenuation map

(using PNPG) and the mass attenuation spectrum (using L-BFGS-B) and successfully reconstructs

attenuation map from real polychromatic X-ray CT measurements. An exciting direction for the

future is to generalize our polychromatic signal model to handle multiple materials and develop

corresponding reconstruction schemes for this scenario.
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